A novel 3-dimensional shape based algorithm is proposed in order to extend the domain of the analytical solutions to planeto-centric mission scenarios, in which hundreds or thousands of revolutions are required. Due to the strong physical meaning of the shape - a non-linear interpolation of consecutive orbits- the method outputs a trajectory closer to the real optimal solution with respect to classical formulations, no matter of the eccentricity of the orbits and the change of plane required. Practical mission constraints are easily formalized, such as maximum thrust threshold , power available and eclipses; moreover, relevant perturbations effects can be considered; free and fixed time of flight are manageable as well. The approach is almost completely analytic, beneficial to significantly lower the computational load, well suited for complex mission scenarios near optimal solutions fast detection.

Un nuovo algoritmo ‘shape-based’ tridimensionale è stato formulato al fine di estendere il dominio di tali metodi a scenari planetocentrici, nei quali risultano spesso necessarie centinaia o migliaia di rivoluzioni. A causa del forte significato fisico della traiettoria stessa, un interpolazione non lineare di orbite consecutive, l’algoritmo fornisce soluzioni più vicine all’ottimo rispetto ai metodi tradizionali, indipendentemente dall’eccentricità delle orbite e dal cambio di piano richiesto. Molti vincoli pratici, come la spinta massima, la potenza disponibile e le eclissi, possono essere facilmente introdotti, così come le perturbazioni gravitazionali. L’algoritmo è in grado di risolvere problemi con tempo di volo imposto o libero, sia in ambiente planetario che interplanetario. L’ approccio è quasi completamente analitico, a tutto beneficio della velocità di esecuzione, rendendolo un ottima scelta per la ricerca rapida di soluzioni quasi ottime in scenari di missioni complesse.

An analytical 3D shape-based algorithm based on orbit interpolation for multi-revolution low-thrust trajectory optimization

PRINETTO, JACOPO
2017/2018

Abstract

A novel 3-dimensional shape based algorithm is proposed in order to extend the domain of the analytical solutions to planeto-centric mission scenarios, in which hundreds or thousands of revolutions are required. Due to the strong physical meaning of the shape - a non-linear interpolation of consecutive orbits- the method outputs a trajectory closer to the real optimal solution with respect to classical formulations, no matter of the eccentricity of the orbits and the change of plane required. Practical mission constraints are easily formalized, such as maximum thrust threshold , power available and eclipses; moreover, relevant perturbations effects can be considered; free and fixed time of flight are manageable as well. The approach is almost completely analytic, beneficial to significantly lower the computational load, well suited for complex mission scenarios near optimal solutions fast detection.
ING - Scuola di Ingegneria Industriale e dell'Informazione
25-lug-2018
2017/2018
Un nuovo algoritmo ‘shape-based’ tridimensionale è stato formulato al fine di estendere il dominio di tali metodi a scenari planetocentrici, nei quali risultano spesso necessarie centinaia o migliaia di rivoluzioni. A causa del forte significato fisico della traiettoria stessa, un interpolazione non lineare di orbite consecutive, l’algoritmo fornisce soluzioni più vicine all’ottimo rispetto ai metodi tradizionali, indipendentemente dall’eccentricità delle orbite e dal cambio di piano richiesto. Molti vincoli pratici, come la spinta massima, la potenza disponibile e le eclissi, possono essere facilmente introdotti, così come le perturbazioni gravitazionali. L’algoritmo è in grado di risolvere problemi con tempo di volo imposto o libero, sia in ambiente planetario che interplanetario. L’ approccio è quasi completamente analitico, a tutto beneficio della velocità di esecuzione, rendendolo un ottima scelta per la ricerca rapida di soluzioni quasi ottime in scenari di missioni complesse.
Tesi di laurea Magistrale
File allegati
File Dimensione Formato  
Tesi_JP.pdf

accessibile in internet per tutti

Descrizione: Testo della tesi
Dimensione 9.38 MB
Formato Adobe PDF
9.38 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/141486