The thesis work studies passivation on cobalt based catalysts used for the Fischer-Tropsch synthesis and very sensitive to air. The passivation allows the deposition of a thin protective film of Co oxides on the surface of the metal catalyst to delay the penetration of oxygen. First the reduction is carried out at significantly higher temperatures 300÷450°C compared to those used during the FTS (200÷250°C). The passivation takes place in a separate reactor, after the passivated catalyst is loaded into the FTS reactor. The performance of cobalt based catalysts is compared by exploiting the two temperatures of 300°C and 400°C. At a lower temperature of 300°C, not reduced CoO particles are present. The dispersion and the number of sites of Co0 is lower than that of the sample reduced to 400°C. By increasing the GHSV of O2/He, oxygen consumption increases with the shortest residence time in the reactor and the total amount of O2 consumed is constant with excellent reproducibility. The relevant industrial aspect concerns the temperature gradients measured at the center of the catalyst bed which increase with the flow of O2. The Co phases formed after passivation and reduction are in line with the literature. The reduction of the passivated catalyst reduced to 300°C and the dispersion of Co0 gives similar results to the tests at 400°C. The effectiveness of the passivation treatment was found for the stability of the passivated catalyst after exposure to air. The reactivity of the catalyst has the same performances in FTS expressed as activity and selectivity obtained with catalyst reduced in situ at 400°C and catalyst reduced to 400°C and passivated in a different reactor and possibly transferred to the reactor used for the FTS and reduced to 300°C.
Il lavoro di tesi studia la passivazione su catalizzatori a base di cobalto usati per la sintesi di Fischer-Tropsch e molto sensibili all'aria. La passivazione consente la deposizione di un sottile film protettivo di ossidi di Co sulla superficie del catalizzatore metallico per ritardare la penetrazione dell'ossigeno. Prima si effettua la riduzione a temperature significativamente più elevate 300÷450°C rispetto a quelle utilizzate durante la FTS (200÷250°C). La passivazione avviene in un reattore separato, dopo il catalizzatore passivato è caricato nel reattore di FTS. Le prestazioni di catalizzatori a base di cobalto vengono confrontate sfruttando le due temperature di 300°C e 400°C. Ad una temperatura di riduzione inferiore di 300°C, sono presenti particelle di CoO non ridotte. La dispersione e il numero di siti di Co0 è inferiore a quella del campione ridotto a 400°C. Aumentando la GHSV di O2/He, il consumo di ossigeno aumenta con il tempo di permanenza più breve nel reattore e la quantità totale di O2 consumata è costante con riproducibilità eccellente. L’aspetto industriale rilevante riguarda i gradienti di temperatura misurati al centro del letto del catalizzatore che aumentano con il flusso di O2. Le fasi Co formate dopo la passivazione e riduzione sono in linea con la letteratura. La riduzione del catalizzatore passivato ridotto a 300°C e la dispersione di Co0 riporta risultati simili ai test a 400°C. Si è riscontrata l’efficacia del trattamento di passivazione per la stabilità del catalizzatore passivato dopo l'esposizione all'aria. La reattività del catalizzatore presenta le stesse prestazioni in FTS espresse come attività e selettività ottenute con catalizzatore ridotto in situ a 400°C e catalizzatore ridotto a 400°C e passivato in un diverso reattore ed eventualmente trasferito nel reattore utilizzato per la FTS e ridotto a 300°C.
Effectiveness of the passivation treatment of a cobalt-based catalyst active in the Fischer-Tropsch synthesis
BOCCIA, BARBARA
2017/2018
Abstract
The thesis work studies passivation on cobalt based catalysts used for the Fischer-Tropsch synthesis and very sensitive to air. The passivation allows the deposition of a thin protective film of Co oxides on the surface of the metal catalyst to delay the penetration of oxygen. First the reduction is carried out at significantly higher temperatures 300÷450°C compared to those used during the FTS (200÷250°C). The passivation takes place in a separate reactor, after the passivated catalyst is loaded into the FTS reactor. The performance of cobalt based catalysts is compared by exploiting the two temperatures of 300°C and 400°C. At a lower temperature of 300°C, not reduced CoO particles are present. The dispersion and the number of sites of Co0 is lower than that of the sample reduced to 400°C. By increasing the GHSV of O2/He, oxygen consumption increases with the shortest residence time in the reactor and the total amount of O2 consumed is constant with excellent reproducibility. The relevant industrial aspect concerns the temperature gradients measured at the center of the catalyst bed which increase with the flow of O2. The Co phases formed after passivation and reduction are in line with the literature. The reduction of the passivated catalyst reduced to 300°C and the dispersion of Co0 gives similar results to the tests at 400°C. The effectiveness of the passivation treatment was found for the stability of the passivated catalyst after exposure to air. The reactivity of the catalyst has the same performances in FTS expressed as activity and selectivity obtained with catalyst reduced in situ at 400°C and catalyst reduced to 400°C and passivated in a different reactor and possibly transferred to the reactor used for the FTS and reduced to 300°C.File | Dimensione | Formato | |
---|---|---|---|
2018_10_Boccia.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
4.08 MB
Formato
Adobe PDF
|
4.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/142733