The employment of devices aimed at harvesting electrical from kinetic energy has been proposed to empower the low energy consumption sensors of last generation. By the conversion of the vibration energy available in the environment, this type of systems is an alternative to the use of batteries, mainly for those applications where their charging/replacement may become hard or excessively expensive. Recently, studies have demonstrated how energy harvesters characterized by nonlinear structures are able to outperform their linear counterpart. Particularly, when the device's input vibrations are characterized by low frequency distributed over a broad bandwidth. Another novelty addressed at the energy conversion optimization from the mechanical to the electrical domain has been introduced, inspired by the nonlinear shunting techniques adopted for vibration damping. SSHI (Synchronized Switch Harvesting on Inductor) circuit resulted to be of particular interest, since if connected in parallel to the harvester, it increases the voltage output, with the guarantee of an higher electrical power production. At the same time, the introduced nonlinearity complicates the mechanical response of the bi-stable oscillator when both the nonlinear techniques are employed in the same harvester. The objective of this Master Thesis is to study energy harvesters based on bi-stable structures, presenting the pros and cons owed to the employment of a nonlinear shunt with respect to a linear one. Besides giving a better comprehension about the dynamic response of bi-stable devices, a simulation and design tool wants to be developed. Most of the attention is pointed on the modeling of systems where the mechanical bi-stability is employed together with the SSHI circuit, filling a gap in the actual literature results. Semi-analytical methods are employed to accomplish this task. Moreover, the obtained results are supplied with numerical and experimental analysis.
L’utilizzo di dispositivi per il recupero di energia elettrica da cinetica è stato proposto per l’alimentazione di sensori a bassa potenza di ultima generazione. Convertendo l’energia derivante dalle vibrazioni disponibili nell’ambiente tramite trasduttori piezoelettrici, questo tipo di sistemi si pone come alternativa all’impiego di batterie, soprattutto per quelle applicazioni dove la ricarica/sostituzione di quest’ultime può divenire difficoltosa o poco conveniente. Recentemente si è studiato come recuperatori energetici caratterizzati da strutture non lineari siano in grado di ottenere prestazioni migliori rispetto alla loro controparte lineare. In particolare, quando le vibrazioni in ingresso al dispositivo sono caratterizzate da frequenze basse e distribuite su una banda larga. Un’altra innovazione mirata ad ottimizzare la conversione di energia dal dominio meccanico a quello elettrico prende spunto dalle tecniche di shunting non lineare applicate nel campo dello smorzamento di vibrazioni. Di particolare interesse sono risultati i circuiti SSHI (Synchronized Switch Harvesting on Inductor), i quali connessi in parallelo al recuperatore, producono un aumento di tensione in uscita, garantendo una più elevata produzione di potenza elettrica. Allo stesso tempo, la non linearità introdotta complica la risposta meccanica dell’oscillatore bistabile quando entrambe le tecniche sono utilizzate nello stesso recuperatore. Questo lavoro di Tesi ha come scopo lo studio di recuperatori energetici basati su strutture bistabili, andando a confrontare i vantaggi e gli svantaggi che si presentano quando uno shunt lineare va ad essere sostituito con uno non lineare. Oltre a fornire una maggiore comprensione delle risposte dinamiche di questi sistemi, si ambisce a svilupparne un tool di simulazione e di progettazione. Maggiore attenzione è posta sulla modellizzazione, tramite metodi semi-analitici, di dispositivi doppiamente non lineari, dove la bistabilità è utilizzata in concomitanza con circuiti SSHI, andando a coprire un aspetto della ricerca che in letteratura non ha ancora ricevuto risposte. I risultati ottenuti sono inoltre corredati da analisi numeriche e sperimentali.
On the combined mechanical and electrical strong nonlinearity for energy harvesting
CARUSO, RICCARDO
2017/2018
Abstract
The employment of devices aimed at harvesting electrical from kinetic energy has been proposed to empower the low energy consumption sensors of last generation. By the conversion of the vibration energy available in the environment, this type of systems is an alternative to the use of batteries, mainly for those applications where their charging/replacement may become hard or excessively expensive. Recently, studies have demonstrated how energy harvesters characterized by nonlinear structures are able to outperform their linear counterpart. Particularly, when the device's input vibrations are characterized by low frequency distributed over a broad bandwidth. Another novelty addressed at the energy conversion optimization from the mechanical to the electrical domain has been introduced, inspired by the nonlinear shunting techniques adopted for vibration damping. SSHI (Synchronized Switch Harvesting on Inductor) circuit resulted to be of particular interest, since if connected in parallel to the harvester, it increases the voltage output, with the guarantee of an higher electrical power production. At the same time, the introduced nonlinearity complicates the mechanical response of the bi-stable oscillator when both the nonlinear techniques are employed in the same harvester. The objective of this Master Thesis is to study energy harvesters based on bi-stable structures, presenting the pros and cons owed to the employment of a nonlinear shunt with respect to a linear one. Besides giving a better comprehension about the dynamic response of bi-stable devices, a simulation and design tool wants to be developed. Most of the attention is pointed on the modeling of systems where the mechanical bi-stability is employed together with the SSHI circuit, filling a gap in the actual literature results. Semi-analytical methods are employed to accomplish this task. Moreover, the obtained results are supplied with numerical and experimental analysis.| File | Dimensione | Formato | |
|---|---|---|---|
|
2019_04_Caruso.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
8.46 MB
Formato
Adobe PDF
|
8.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/146116