Gastric cancer is the fifth most frequently diagnosed cancer and the third leading cause of cancer deaths. The numbers are set to grow especially in the low and middle income countries (LMICs), where the diagnosis tools are often inaccessible because of high costs and the difficulty in reprocessing. For this reason, the Hydrojet, a low cost platform for gastroscopy, that uses soft robotic and a water jet propulsion system to move, was developed. The pressure-driven gastroscope is, however, limited into the manoeuvrability because it currently has got only two degrees of freedom (DOF). The aim of this project is the achievement of a third degree of freedom through the introduction of a pressure-driven linear actuator in order to increase the workspace. The project is divided into two phases: the numerical modeling and the manufacturing process. To define the design, the materials and the type of constraint to be incorporated, a Finite Element Analysis has been conducted.The aim is to define an ideal model that is taken as a reference in the second phase of the production process. The analysis carried out aims at optimization in terms of maximum elongation, minimum expansion and maximum bending. In this way, the material to be used and the type of constraint to be incorporated are determined, and the ideal model is thus defined. Switching from the ideal model to the real one for manufacturing, has required some precautions related to the production process that have introduced undesirable effects. A second qualitative analysis was made to choose what was the constraint that, in reality, minimized these problems. Once identified, in the last step of this phase , a new innovative 3D-printed loom was developed and incorporated into the mold, in order to recreate this constraint in an economic and repeatable way.
Il cancro allo stomaco è la quinta neoplasia maligna per incidenza e la terza causa principale di decessi dovuti al cancro. I numeri sono destinati a crescere nei prossimi anni, soprattutto nei paesi a reddito medio-basso (LMIC), dove gli strumenti di diagnosi sono spesso inaccessibili, a causa dei costi elevati e della difficoltà di sterilizzare i dispositivi. Per questo è stato sviluppato l’Hydrojet, un gastroscopio a basso costo che sfrutta la soft robotic e un sistema a propulsione a getto d’acqua per muoversi. Questo è però limitato nella manovrabilità perché ha solo due gradi di libertà. Lo scopo del progetto è la realizzazione di un terzo grado di libertà attraverso l’introduzione di un attuatore lineare pneumatico, per aumentare lo spazio di lavoro. Il progetto è suddiviso in due parti: la modellazione numerica e il processo di fabbricazione. Per definire il design dell’attuatore, i materiali e il tipo di vincolo da incorporare per indirizzare il movimento, è stata condotta un’analisi agli elementi finiti. Lo scopo è definire un modello ideale che venga preso come riferimento nella seconda fase del processo produttivo. L’analisi condotta ha come scopo l’ottimizzazione in termini di massimo allungamento, minima espansione e massima flessione. Vengono in questo modo decisi il materiale da utilizzare e il tipo di vincolo da incorporare, e viene così definito il modello ideale. Passare dal modello ideale a quello reale per la fabbricazione, ha richiesto degli accorgimenti legati al processo produttivo che hanno introdotto degli effetti indesiderati. è stata fatta una seconda analisi qualitativa per scegliere quale fosse il constraint che nella pratica minimizzasse questi problemi. Una volta identificato, nell’ultima fase del progetto, è stato sviluppato un nuovo telaio innovativo, stampato in 3D e incorporato nella mold allo scopo di ricreare tale vincolo in modo economico e ripetibile.
Modeling, design and development of a linear pneumatic actuator for soft robotic applications
RUSTUM, SARA
2018/2019
Abstract
Gastric cancer is the fifth most frequently diagnosed cancer and the third leading cause of cancer deaths. The numbers are set to grow especially in the low and middle income countries (LMICs), where the diagnosis tools are often inaccessible because of high costs and the difficulty in reprocessing. For this reason, the Hydrojet, a low cost platform for gastroscopy, that uses soft robotic and a water jet propulsion system to move, was developed. The pressure-driven gastroscope is, however, limited into the manoeuvrability because it currently has got only two degrees of freedom (DOF). The aim of this project is the achievement of a third degree of freedom through the introduction of a pressure-driven linear actuator in order to increase the workspace. The project is divided into two phases: the numerical modeling and the manufacturing process. To define the design, the materials and the type of constraint to be incorporated, a Finite Element Analysis has been conducted.The aim is to define an ideal model that is taken as a reference in the second phase of the production process. The analysis carried out aims at optimization in terms of maximum elongation, minimum expansion and maximum bending. In this way, the material to be used and the type of constraint to be incorporated are determined, and the ideal model is thus defined. Switching from the ideal model to the real one for manufacturing, has required some precautions related to the production process that have introduced undesirable effects. A second qualitative analysis was made to choose what was the constraint that, in reality, minimized these problems. Once identified, in the last step of this phase , a new innovative 3D-printed loom was developed and incorporated into the mold, in order to recreate this constraint in an economic and repeatable way.File | Dimensione | Formato | |
---|---|---|---|
2019_07_Rustum.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
57.5 MB
Formato
Adobe PDF
|
57.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/149049