Abstract Introduction Corticospinal Excitability (ECS) is a useful indicator to evaluate neuromuscular system functioning. Scientific evidences show how systemic damages to the neurospinal tract can be attributed to a decrease in ECS, typical of post-stroke patients, while an opposite increase is connected to an improvement in conditions after rehabilitation treatments. An adequate instrument of excitability evaluation is Transcranial Magnetic Stimulation (TMS), a neuro-investigation, non-invasive and pain free method used to examine cortical and spinal plasticity mechanisms in motor learning studies and in neuro-rehabilitation. This technique is based on the evocation of the peripheral response in the target muscle associated to the primal motor cortex area stimulated by TMS. The generated response is called Motor Evoked Potential (MEP). Through electromagnetic stimuli at various intensities and the gathering of a series of MEP, it is possible to assemble a recruitment curve, also known as Stimulus-Response curve (SR). From this curve it is possible to extract distinctive parameters for a total valuation of ECS. This measurement main limitation is its extended durations of the acquisitions and its variability during consecutive tests. In order to provide the clinical practice with reliable and useful results, it is necessary to ensure that the observed variations in MEP are attributed to real changes in the ECS status of the subject and not caused by intrinsic variabilities or measurement errors. To date, many studies still insist on intricated test protocols with prolonged execution periods, requiring complex expensive systems that need a personal format in order not to originate measurement errors. A rapid acquisition method has recently been introduced to remedy some of these critical issues; this process requires the transmission of 60 to 80 stimuli every 3 to 4 seconds on a pseudorandom intensity [Mathias et al. 2014]. The sending of a reduced number of stimuli for a total test duration of less than five minutes has proved to be enough to obtain a SR curve, from which to extract reliable ECS parameters [Peri et al. 2017]. Up until now, the method has been tested only on healthy subjects in order to evaluate ECS variations on resting condition or during isometric contractions. A new recently developed challenge concerns the study of motor control strategies and of ECS variations during specific motor tasks, such as cycling [Forman et al. 2019]. The understanding of these mechanisms is fundamental, considering that the application of cycle ergometer has numerous advantages concerning walk recovering training: it reduces considerably the need for postural control; it requires less fatigue and supervision for the patient and requires muscular activation patterns similar to the walk [Ambrosini et al. 2016]. Being able to provide ECS measures during cycling is of great importance as it promotes the application of the rehabilitative technique during post-injury phase, when the subject is still not able to stand independently. The growing interest of clinical and scientific researches in analysing cortical and spinal plasticity mechanisms in different experimental conditions and pathological subjects as well as the complexity of TMS acquisitions show the importance of providing the clinician with an optimized system able to guarantee the automated handling of TMS acquisitions, following the rapid method in order to provide reproducible measurements through different sessions. Objective The goal of this dissertation is to develop a software platform able to execute TMS acquisitions with respect to the literary protocols: • Identification of the Motor Threshold (MT); • Recruitment curves at rest; • Recruitment curves during rhythmic cycling movement on a cycle ergometer • MEP measures that vary according to the stimulation conditions, such as the limb position or the undergoing workload during test; The software has been realized to perform acquisitions according to the rapid method, allowing to observe real-time data acquisition and control of the main sources of exogenous variabilities in an automated manner. Methods In order to carry out this project, a Graphic User Interface (GUI) has been developed in Matlab 2018b®. This interface is able to manage: a biphasic magnetic stimulator (Magstim Rapid2, The Magstim Company, Dyfed, UK) to send TMS pulses; a multi-channel electromyography (Porti 32™, TMSi) to register MEP in the target muscle; a neuro-navigation system that controls an optoelectronic system so as to track the position of the coil on the head of the subject and to keep the position unchanged during test; inertial XSENS sensors (Xsens Technologies BV, Enschede, Netherlands) to control the orientation of the studied limb. The platform, that is displayed in FIGURE I allows the operator to choose the number of impulses to send, the stimulation intensity, the limb position, the cycling resistance and its cadence, the number of bipolar channels to acquire and observe, and the time lapse in which to record the EMG signal. The selected target muscle is the Tibialis Anterior (TA) whose control is of great importance for walking, often damaged following pathologies such as a stroke. The GUI permits to acquire and to observe in both the lower limbs the EMG signal both of the TA and simultaneously of the Soleo (SOL), its opposing muscle, in order to compare the evoked response. Figure I: Graphic User Interface (GUI) for recruitment curves acquisition. This GUI is able to execute different types of acquisitions: o Determination of the motor threshold (MT) as the minimal stimulation value able to recall a 50 μV MEP in at least 5 tests out of 10; o SR curve acquisition, both on resting condition, when there is no activity in the target muscle, and during cycling activity on a cycle ergometer. During the latter, the software permits the operator to select the crank angle on which to send the signals. o MEP measures acquisition at changing working conditions, during which the subject receives pre-set several stimuli with the same intensity and crank angle while cycling on the cycle ergometer with a pre-set resistance and cadence. These tests do not expect to define an entire SR curve, instead the sending of a reduced number of stimuli is used to acquire a rapid estimate and to reduce muscular fatigue. o MEP measures acquisition that varies as the stimulation angle changes. During cycling the subject receives a number of impulses at the same level of intensity, but with a different crank angle. This test was designed to determine whether the MEP values on varying crank angles respond to the EMG activity of the target muscle during cycling. The following experimental protocol has been tested on two healthy subjects aged 26 years in order to examine the GUI features and the feasibility of different types of acquisition: 1) Identification of the optimal stimulation spot (hotspot); 2) Identification of the MT; 3) Acquisition of a familiarisation curve; 4) Acquisition at rest condition of a SR curve; 5) Acquisition of 2 different SR curves on a cycle ergometer, the first one with the TA in a phase of maximal muscular activity (active phase), with a leg at a stimulation of 225°, the latter while the same leg is at a crank angle of 45°, when the muscle is less active (recovery phase); 6) 4 tests, each composed of 10 stimuli at 120% MT intensity, changing the crank angle (45° or 225°) and the cycling resistance (gear 15 or gear 15). Another sort of test on cycle ergometer has been conducted on a third healthy subject, aged 26 years. During cycling on gear 15, the subject has received 145 stimuli at 120% MT, at different crank angles. This changing-angle test has been proposed in order to observe whether the MEP values follow the trend of the electromyographic (EMG) activity during cycling. The software platform has also been selected for a clinical study aiming to evaluate the neuro-plastic processes of lower limb motor control in after stroke patients, undergoing a rehabilitation treatment. Within a 4 weeks’ period, two sessions of acquisition have been conducted on an 83-years-old patient suffering from an ischemic stroke in sub-acute phase. During both the sessions, 2 SR curves have been acquired and have been examined to assess the intra-session reliability of the extracted parameters. The patient has sustained a motor rehabilitation treatment between the two sessions; the outcomes have been evaluated through clinical scale. With the help of an analysis software in Matlab, the MEP data collected from the acquisitions has been modelled using a four-parameter Bolzmann sigmoid function, and this model has been fitted to the data with a Levenberge-Marquardt nonlinear list mean-square algorithm. These parameters for a global evaluation of ECS have been extracted from the SR curves: MEPmax, I50, Slope, MT, AURC. By using Mann-Whitney test, a non-parametric statistical analysis has been conducted in order to highlight significant differences among the outcomes of the changing-resistance tests. In addition, the Spearman correlation between MEP and the level of pre-stimulus activation of the muscle. Results The goodness of the fit has been evaluated by means of the coefficient of determination (R2) and it turn out to be greater than 0.8 for all the SR curves, showing an excellent data adjustment to the model. This result is a first index of the outcomes accuracy. All tests conducted on healthy subjects have been considered practicable, both at resting and dynamic condition on cycle ergometer. An increase in the evoked potential amplitude has been highlighted following the subjects’ muscular activity intensification. At rest, the curves have shown a lower Slope, AURC and MEPmax than during cycling, with an average decrease of 103.2%, 140.1% and 187.6% respectively with respect to TA. The results for Subject 1 are showed on figure II. Moreover, during cycle ergometer tests, the ECS parameters for TA has been greater in the active phase curve than in the recovering one, with a 16.3 % increase for subject 1 and a 14.1% increase in the AURC for subject 2. A reverse behaviour has been observed for SOL, the TA opposing muscle, with an AURC increase of 24% and 5.2% changing from 225° to 45° stimulation condition for the two subjects. These considerations show a direct proportionality between ECS parameters and the pre-stimulus muscular activation level, as is observed in the current literature [Tallent et al. 2012]. FIGURE II: Subject 1’s results at resting and cycling condition. Panels A and B represent pre-stimulus EMG level during the three test conditions, panels C and D show the SR curves. The outcomes analysis of the changing-resistance tests has showed a significative increase of the average strength in the pre-stimulus EMG signal following the MEP amplitude growth. Both subjects’ outcomes highlight that TA activation level and the evoked potential size are greater when the stimulus are sent during active phase than in the recovering one (p-value< 0.001). In Subject 1, a 8.1% pre-stimulus EMG increase is measured and it caused a 9.6% growth in the MEP amplitude; in Subject 2, a 183%pre-stimulus EMG and a 378.1% MEP amplitude increases are measured. A similar increase is observed changing form gear 5 to 15 when the lower limb is at the active phase: a 11.6% increase with p-value =0.002 is found for Subject 1 and an 80.1% growth with p-value =0.003 in Subject 2’s responses. In this case, only Subject’s 1 outcomes have highlight a significative 11.6% increase 0f the pre-stimulus EMG (p-value< 0.001), whereas for Subject 2 no significative difference in the EMG signal is found between the two conditions. In changing-resistance tests, when TA is stimulated in active phase, this proportional trend is also showed by the good correlation among pre-stimulus EMG and MEPpp amplitude (Spearman’s ρ equal to 0.66 e 0.60 for subject 1 and 2, respectively, p-value <0.01). The test with variable angle stimulation has shown a high variability among the collected measurements and it has not been possible to identify a distinctive trend in relation to the crank angle. The high resistance test cannot be considered appropriate for the subject because of its prolonged duration, >20 minutes, and the excessive muscular fatigue. For these reasons, this sort of test is not considered as suitable for pathological subjects. In closing, the examined parameters of the SR curves on the post-stroke subject have revealed a proper obtainability, with a percent difference between the two tests in the same session that goes from a minimum of 0.5% to a maximum of 7.7% both pre- and post-treatment. On FIGURE III the recruitment curves obtained during pre-post treatment sessions are reported. FIGURE III: Post-ictus patient’s SR curves. On left side are showed the outcomes of the pre-treatment session, on the right side the ones assessed at the end of rehabilitation, 4 weeks apart. The longitudinal variation observed on patient have been with the Minimal Detectable Change (MDC) identified on a sample of healthy adult in a TMS’s measures reliability studio [Peri et al. 2017]. The MDC values was: 0.26 for the MEPmax (normalized with the Mmax value), 8.3 for normalized AURC, 20.5%MSO for I50 and 12.2%MSO for the MT. it is important to take into consideration that this studio has been conducted on healthy subjects, that are characterised by a better level in ECS. Between the two sessions, the MEPmax and AURC average value has increased respectively of 0.023 and 1.83 (data normalized with Mmax), while the MT and the I50 have decreased of 15.5%MSO and 14.6% compared to pre-treatment measurements The longitudinal varieties observed in the patient exceed at least by one order of magnitude the intra-session differences typical of intrinsic variabilities of the TMS measures. Considering the difference in the ECS conditions, the MT longitudinal variation overcomes the MDC values identified on healthy subjects. Therefore, this variation has confirmed an upgrading in the ECS status of the patient that also reflects an overall improvement on the clinical scales (Motricity Index: pre-treatment 64.5; post-treatment: 87.5. Motor subscale of Functional Independence Measure: pre-treatment 46; post-treatment: 63). Conclusion The hereby dissertation led to the development of a flexible software platform for TMS acquisitions. The preliminary data collected on healthy subjects are promising, confirming the wide functions of the platform and showing its usability in clinical studies. The software platform has proved to be efficient and flexible, allowing the acquisition of evoked motor potential through different types methods of acquisition and stimulation, particularly on a resting or dynamic condition, both on healthy and pathological subjects. The results, with respect to the literature, underline a correlation between the myoelectric activity level of the muscle pre-stimulus and an increase of ECS connected to the motor recovery in a subject post-stroke associated to a rehabilitative treatment. Due to the reduced number of participants, it is not possible to draw definite conclusions, rather than to obtain general indications about the coherence of the outcomes, as according to the literature. An higher sample size will be necessary in the future to demonstrate with enough statistical strength the reliability of the system. In addition, it will be required to increase the number of post-stroke patients in order to gain a more profound knowledge of the neuroplastic mechanisms that play a fundamental role during motor recovery of the lower limb in sub-acute phase. This possibility has been offered by an ongoing study on 15 post-stroke subjects approved from the Ethical Committee and directed from the IRCCS ICS Maugeri Lissone, that employs this platform for ECS measures acquisitions in pre-post rehabilitation.
Sommario Introduzione L’Eccitabilità Corticospinale (ECS) è un indicatore utile per valutare il funzionamento del sistema neuromuscolare. Evidenze scientifiche mostrano come la diminuzione di ECS sia riconducibile a un danno sistemico al tratto neuro-spinale, tipico di soggetti colpiti da ictus, mentre un suo aumento sia correlato a un miglioramento della condizione dovuto a trattamenti riabilitativi. Uno strumento adeguato alla valutazione dell’eccitabilità è la Stimolazione Magnetica Transcranica (TMS), una tecnica di neuro-investigazione non invasiva e non dolorosa usata per indagare meccanismi di plasticità corticale e spinale in studi di apprendimento motorio e riabilitazione. Questa tecnica si basa sull’evocazione di una risposta periferica nel muscolo target associato all’area della corteccia motoria primaria stimolata da TMS. Questa risposta generata sul muscolo prende il nome di Potenziale Motorio Evocato (Motor Evoked Potential, MEP). Tramite l’invio di stimoli elettromagnetici ad intensità variabile e la raccolta di una serie di MEP è possibile costruire una curva di reclutamento, detta anche curva di Stimolo-Risposta (SR). Da questa curva, ottenuta rappresentando il valore del MEP in funzione dell’intensità di stimolazione, è possibile ricavare i parametri caratteristici per una stima complessiva della ECS. Il limite principale di questa misura è la lunga durata delle acquisizioni e la sua variabilità durante prove successive. Al fine di rendere i risultati affidabili e utilizzabili dalla pratica clinica, risulta necessario garantire che le variazioni osservate nei MEP siano attribuibili a reali cambiamenti dello stato di ECS nel soggetto e non siano causati da variabilità intrinseche o errori di misura. Inoltre, ancora oggi molti studi prevedono protocolli di prova complicati con lunghi tempi di esecuzione. Per ovviare ad alcune di queste criticità, è stato recentemente proposto un metodo di acquisizione rapido che consente di ridurre il tempo di acquisizione delle curve SR e minimizzare l’effetto delle variazioni di ECS [Mathias et al. 2014]. Questo metodo rapido prevede l’invio di 60-80 stimoli intervallati tra loro da 3-4 secondi ad un’intensità pseudo-casuale. Il metodo rapido ha dimostrato che l’invio di un ridotto numero di stimoli per una durata totale della prova inferiore a 5 minuti è sufficiente per ottenere una curva SR da cui estrarre affidabili parametri di ECS [Peri et al. 2017]. Attualmente il metodo è stato testato solo su soggetti sani per valutare le variazioni dell’ECS a riposo o durante contrazioni isometriche. Una nuova sfida che recentemente si è delineata nella ricerca scientifica riguarda lo studio delle strategie di controllo motorio e delle variazioni di ECS durante specifici compiti motorio, come la pedalata [Forman et al. 2019]. La comprensione di questi meccanismi è importante, visto che l’utilizzo del cicloergometro ha diversi vantaggi nell’allenamento per il recupero del cammino: minimizza la necessità di controllo posturale, richiede meno affaticamento e supervisione per il paziente e prevede dei pattern di attivazione muscolare simili alla camminata [Ambrosini et al. 2016]. Essere in grado di fornire delle misure di ECS durante la pedalata è quindi di grande interesse per promuove l’utilizzo di questa tecnica riabilitativa nella fase successiva alla lesione, quando il soggetto non è in grado di stare in piedi autonomamente. Alla luce delle complessità delle acquisizioni TMS e del crescente interesse della ricerca scientifica e clinica nell’indagare i meccanismi di plasticità corticale e spinale in diverse condizioni sperimentali e in soggetti patologici, risulta importante fornire al clinico un sistema ottimizzato che garantisca la gestione automatizzata delle acquisizioni TMS secondo il metodo rapido e fornisca misurazioni ripetibili tra diverse sessioni, sia in condizioni statiche che dinamiche. Obiettivo L’obiettivo di questa tesi è stato quello di sviluppare una piattaforma software versatile e personalizzabile che consentisse lo svolgimento di acquisizioni TMS secondo diversi protocolli presenti nella recente letteratura: • Identificazione della Soglia Motoria (MT). • Curve di reclutamento a riposo. • Curve di reclutamento durante il movimento ritmico di pedalata su cicloergometro. • Misure dell’ampiezza picco-picco del MEP al variare delle condizioni di stimolazione, quali la posizione dell’arto o carico di lavoro sostenuto durante la prova. Il software è stato realizzato per eseguire acquisizioni, per quanto possibile rapide, permettendo per tutta la prova la visualizzazione in real-time dei dati ed il controllo delle principali fonti di variabilità esogena in maniera automatizzata. Metodi Nell’ambito di questa tesi è stata realizzata un’interfaccia grafica (Graphic User Interface, GUI), in Matlab 2018b®, mostrata in FIGURA I. Questo software è in grado di gestire: uno stimolatore magnetico TMS bifasico (Magstim Rapid2, The Magstim Company, Dyfed, Regno Unito) per l’invio di impulsi TMS, un elettromiografo multicanale (Porti 32™, TMSi) utilizzato per registrare i MEP nel muscolo target, un sistema di neuro navigazione che utilizza un sistema optoelettronico (Polaris Vicra, Northern Digital Inc.) allo scopo di tracciare la posizione reciproca tra bobina e testa del soggetto e di mantenerla invariata durante la prova, sensori inerziali (XSENS Xsens Technologies BV, Enschede, Olanda) per controllare la posizione dell’arto analizzato. FIGURA I: Interfaccia grafica della piattaforma software per l’acquisizione della curva di reclutamento La piattaforma permette all’operatore di scegliere il numero di impulsi da inviare, l’intensità di stimolazione, la posizione dell’arto, la resistenza e la cadenza della pedalata, il numero di canali bipolari da acquisire e visualizzare e l’intervallo di tempo in cui registrare il segnale elettromiografico (EMG). Il muscolo selezionato come target è il Tibiale Anteriore (TA), il cui controllo, spesso danneggiato in seguito a patologie come l’ictus, è di grande importanza durante il cammino. La GUI consente di acquisire e visualizzare il segnale EMG del TA di entrambi gli arti inferiori e simultaneamente acquisire il segnale del muscolo antagonista, il Soleo (SOL) di entrambi gli arti, così da poter confrontare le risposte evocate. Questa GUI è in grado di eseguire diverse tipologie di acquisizione: o Determinazione della MT, come minor valore di stimolazione in grado di evocare un MEP di ampiezza di 50 μV in almeno 5 prove su 10. o Acquisizione di curve SR, sia in condizioni di riposo quando non è presente alcuna attività sul muscolo target, sia durante la pedalata su cicloergometro. In questa condizione dinamica, il software permette all’operatore di selezionare a quale angolo alla pedivella inviare gli stimoli. o Acquisizione MEP a carico di lavoro variabile, in cui il soggetto riceve un numero predefinito di stimoli tutti all0 stesso angolo alla pedivella ed alla stessa intensità mentre pedala sul cicloergometro con una cadenza e una resistenza preimpostate. Queste prove non prevedono la costruzione dell’intera curva SR, ma l’invio di un numero di stimoli ridotto per ottenere una stima rapida ed evitare affaticamento muscolare. o Acquisizione MEP al variare dell’angolo di stimolazione. Durante la pedalata il soggetto riceve una serie di impulsi ad intensità di stimolazione fissa ma ad un diverso angol0 alla pedivella. Questa prova è stata pensata per osservare se l’ampiezza picco-piccco del MEP al variare dell’angolo alla pedivella segue l’andamento dell’attività elettromiografica del muscolo target durante il ciclo della pedalata. Per testare le funzionalità della GUI e la fattibilità delle diverse tipologie di acquisizione, due soggetti sani di 26 anni si sono sottoposti al seguente protocollo sperimentale: 1) identificazione del sito ottimale di stimolazione (hotspot); 2) identificazione della MT; 3) acquisizione di una curva di reclutamento a riposo di familiarizzazione; 4) acquisizione di una curva SR a riposo; 5) acquisizione di 2 curve SR su cicloergometro a due diversi angolo alla pedivella: una a 225°, cioè mentre il TA è fase di massima attività muscolare (Fase attiva) e una a 45°, cioè quando il muscolo è meno attivo (Fase di recupero); 6) 4 prove da 10 stimoli ciascuna, tutti ad intensità pari al 120%MT variando l’angolo alla pedivella (45° o 225°) e la resistenza della pedalata (marcia 5 o marcia 15). Su un terzo soggetto sano è stata invece condotta l’acquisizione ad angolo variabile durante la pedalata a marcia 15. Il soggetto ha ricevuto 145 stimoli, tutti al 120% MT, a diversi angoli alla pedivella. La piattaforma software è stata inoltre approvata dal Comitato Etico Centrale dell’IRCCS ICS Maugeri per l’utilizzo all’interno di uno studio clinico per la valutazione dei processi neuro plastici di controllo motorio dell’arto inferiore in pazienti post-ictus sottoposti a riabilitazione motoria. Durante questa tesi sono state operate 2 sessioni di acquisizione, a distanza di 4 settimane, su un paziente colpito da un ictus ischemico in fase sub-acuta. In entrambe le sessioni sono state acquisite 2 curve SR, i cui parametri sono stati utilizzati per osservare la ripetibilità intra-sessione della misura. Tra le due sessioni, il paziente si è sottoposto a un trattamento di riabilitazione motoria, i cui effetti sulla mobilità sono stati valutati tramite scale cliniche. Obiettivo di queste prove, è più in generale dello studio clinico, è valutare gli effetti del trattamento neuro-riabilitativo in termini di eccitabilità corticale. L’analisi delle curve SR è stata realizzata con un software dedicato: i dati MEP raccolti durante le acquisizioni sono stati modellati per la costruzione delle curve SR secondo un modello a quattro parametri di Bolzmann ed interpolati attraverso una regressione non-lineare secondo il metodo di minimizzazione dell’errore quadratico medio mediante successive iterazioni dell’algoritmo Levenberge-Marquardt. Dalle curve SR ottenute sono stati estratti i seguenti parametri per la stima dell’ECS: valore del plateau (MEPmax), valore di stimolazione che evoca una risposta di intensità media tra zona di plateau e zona di inattivazione (I50), massima pendenza della curva (Slope), Soglia Motoria e l’area sottesa alla curva di reclutamento (AURC). Per le prove a carico di lavoro variabile invece, sono stati calcolati la mediana e il range interquartile per ogni condizione di stimolazione e sono stati confrontati. Per evidenziare differenze significative tra i risultati ottenuti variando la resistenza alla pedalata, è stata eseguita un’analisi statistica non parametrica con il test di Mann-Whitney. È inoltre calcolata la correlazione per ranghi di Spearman tra il MEP e lo stato di attivazione del muscolo pre-stimolo. Risultati Per le curve SR ottenute, l’indice della bontà del fitting (R2) è risultato sempre maggiore di 0.8 per tutte le acquisizioni mostrando un ottimo adattamento dei dati con il modello. Questo risultato è un primo indice della correttezza delle misure ottenute. Le prove svolte sui soggetti sani sono risultate fattibili sia in condizioni di riposo sia in condizioni dinamiche sul cicloergometro. Si è evidenziato un aumento dell’ampiezza delle risposte evocate di pari passo con l’aumento dell’attività muscolare in entrambi i soggetti. Infatti, le curve a riposo hanno mostrato una Slope, un’AURC e un MEPmax inferiori rispetto alle prove su cicloergometro, con una diminuzione media, rispettivamente, del 103.2%, 140.1% e 187.6% rispetto alle misure ottenute sul TA durante la pedalata in fase di recupero. In FIGURA II si riportano i risultati ottenuti dal soggetto 1. Inoltre, durante le prove sul cicloergometro i parametri di ECS sono risultati superiori nella curva SR ottenuta in fase di attivazione muscolare rispetto alla curva SR per il TA in fase di recupero, dove si calcola un aumento dell’AURC del 16.3% per il soggetto 1 e del 14.1% per il soggetto 2. Nelle curve del SOL, muscolo antagonista del TA, si è osservato il comportamento contrario: l’AURC che aumenta passando da 225° a 45° del 24% e del 5.2% rispettivamente per i due soggetti. Queste considerazioni mostrano una diretta proporzionalità tra le misure di ECS e lo stato di attivazione del muscolo pre-stimolo che trova riscontro in letteratura [Tallent et al. 2012]. FIGURA II: Risultati del Soggetto 1 in condizioni di riposo e condizioni di pedalata su cicloergometro. I pannelli A e B rappresentano l’ampiezza dell’EMG pre-stimolo nelle tre condizioni di prova, i pannelli C e D riportano le curve SR acquisite. Nei pannelli A e C sono riportati le misure relative al muscolo TA, nel pannello B e D le misure relative al SOL. L’analisi delle risposte al variare della resistenza della pedalata ha mostrato un aumento significativo della potenza media del segnale EMG pre-stimolo all’aumentare dell’ampiezza del MEP. I risultati ottenuti in entrambi i soggetti confermano che stimolando il TA in fase attiva si ha un livello di attivazione e un’ampiezza delle risposte evocate significativamente superiore rispetto a quando lo stimolo giunge con il muscolo in fase di recupero (p-value<0.001 per entrambi i soggetti). Nel soggetto 1, si misura un aumento dell’EMG pre-stimolo di 8.1% che si traduce in una crescita del 9.6% dell’ampiezza picco-picco del MEP; nel soggetto 2 l’aumento dell’EMG è del 183% e addirittura del 378.1% per l’ampiezza picco-picco del MEP. Un simile aumento dell’ampiezza picco-picco del MEP è osservato passando da marcia 5 a marcia 15 quando il tibiale è in fase attiva: si ha un aumento dell’11.6% e p-value= 0.002 per il soggetto 1 e una crescita dell’80.1% con p-value= 0.003 nelle risposte del soggetto 2. In questo caso, si evidenzia però un aumento significativo del 11.3% nell’EMG pre-stimolo solo per il primo soggetto (p-value <0.001), mentre per il soggetto 2 non si è ottenuta una differenza significativa per quanto riguarda l’ampiezza dell’EMG pre-stimolo nelle due condizioni. Nelle prove a lavoro variabile, quando il TA è in fase attiva l’andamento proporzionale è reso evidente anche dalla buona correlazione tra l’ampiezza dell’EMG pre-stimolo e l’ampiezza picco-picco del MEP corrispondente (ρ di Spearman 0.66 e 0.60 rispettivamente per il soggetto 1 e il soggetto 2 e p-value <0.01). La prova con stimolazione ad angolo variabile ha mostrato un’elevata variabilità delle misure raccolte e non è stato possibile identificare un andamento caratteristico in funzione dell’angolo alla pedivella. La prova è stata giudicata non fattibile dal soggetto che ha accusato affaticamento muscolare per l’elevata resistenza imposta ed eccessiva durata, superiore ai 20 minuti. Non si ritiene pertanto che questa prova sia adatta a studi su soggetti patologici. Infine, i parametri estratti dalle curve SR registrate su un paziente di 83 post-ictus (tempo dall’ictus: 1 mese) hanno mostrato una buona ripetibilità, con una differenza percentuale tra le due prove nella stessa sessione che va da un minimo di 0.5% a un massimo di 7.7% sia pre- che post-trattamento. Si riporta in FIGURA III l’andamento delle curve di reclutamento ottenute pre- e post-trattamento in condizioni di riposo. FIGURA III: Curve di reclutamento ottenute sul paziente post-ictus. A sinistra sono riportare le due acquisizioni della sessione pre-trattamento riabilitativo, a destra quelle della sessione al termine del trattamento, a distanza di 4 settimane. Le variazioni longitudinali osservate nel paziente sono state confrontate con la differenza minima misurabile (MDC) identificata su un campione di soggetti sani anziani in uno studio di affidabilità delle misure TMS [Peri et al. 2017]. I valori di MDC stimati sono stati: o.26 per il MEPmax (Normalizzato con l’Mmax), 8.3 per l’AURC normalizzato, 20.5 %MSO per l’i50 e 12.2 %MSO per la MT. È da prendere in considerazione che questo studio di riferimento è stato condotto su soggetti sani, caratterizzati quindi da uno stato di ECS maggiore. Tra le due sessioni, il valore medio del MEPmax e dell’AURC (dati normalizzati alla Mmax del paziente) è aumentato rispettivamente di o.023 e di 1.83, mentre la MT e l’I50 si sono abbassati di 14.6%MSO e 15.5%MSO rispetto alle misure pre-trattamento. Considerando le differenze nell’ ECS, la variazione longitudinale della MT del paziente supera pertanto i valori di MDC dei soggetti sani. Questa variazione è indice di un miglioramento dello stato di ECS del paziente che si riflette anche in un miglioramento complessivo osservato nelle scale cliniche (Motricity Index: pre-trattamento 64.5; post-trattamento 87.5. Sottoscala motoria della Functional Independence Measure: Pre-trattamento 46; post-trattamento: 63). Conclusioni Il presente lavoro di tesi ha portato allo sviluppo di una piattaforma software flessibile per acquisizioni TMS. I risultati preliminari ottenuti sui soggetti sani sono promettenti, confermando le ampie funzionalità della piattaforma e mostrando la fattibilità di utilizzo della piattaforma in clinica. La piattaforma software si è dimostrata efficiente e flessibile, consentendo l’acquisizione del potenziale motorio evocato in diverse modalità di stimolazione e acquisizione, in particolare a riposo o in condizioni dinamiche durante pedalata su cicloergometro, sia su soggetti sani sia su soggetti patologici. I risultati delle acquisizioni, in linea con la letteratura, evidenziano una relazione tra il livello di attività mioelettrica del muscolo pre-stimolo e l’ampiezza del MEP nei soggetti sani e un aumento dell’ECS correlato al recupero motorio nel paziente post-ictus, dovuto al trattamento riabilitativo. A causa del numero ridotto di soggetti presi in esame non è possibile trarre conclusioni definitive, ma solo ottenere delle indicazioni sulla coerenza delle risposte con quanto riportato in letteratura. In futuro sarà necessario eseguire acquisizioni su un numero maggiore di soggetti al fine di dimostrare con sufficiente potenza statistica l’affidabilità del sistema. Inoltre, sarà necessario aumentare il campione di pazienti post-ictus per avere più approfondita comprensione dei meccanismi neuroplastici che entrano in gioco durante il recupero motorio nell’arto inferiore in fase sub-acuta. Questa possibilità è offerta dallo studio in corso su 15 soggetti post-ictus, approvato dal Comitato Etico e avviato presso l’IRCCS ICS Maugeri di Lissone, che adotta questa piattaforma per le acquisizioni delle misure di ECS pre-post riabilitazione.
Sviluppo di una piattaforma per acquisizioni con stimolazione magnetica transcranica per la valutazione dell'eccitabilità corticale in ambito neuro-riabilitativo
CATTANEO, GIACOMO
2018/2019
Abstract
Abstract Introduction Corticospinal Excitability (ECS) is a useful indicator to evaluate neuromuscular system functioning. Scientific evidences show how systemic damages to the neurospinal tract can be attributed to a decrease in ECS, typical of post-stroke patients, while an opposite increase is connected to an improvement in conditions after rehabilitation treatments. An adequate instrument of excitability evaluation is Transcranial Magnetic Stimulation (TMS), a neuro-investigation, non-invasive and pain free method used to examine cortical and spinal plasticity mechanisms in motor learning studies and in neuro-rehabilitation. This technique is based on the evocation of the peripheral response in the target muscle associated to the primal motor cortex area stimulated by TMS. The generated response is called Motor Evoked Potential (MEP). Through electromagnetic stimuli at various intensities and the gathering of a series of MEP, it is possible to assemble a recruitment curve, also known as Stimulus-Response curve (SR). From this curve it is possible to extract distinctive parameters for a total valuation of ECS. This measurement main limitation is its extended durations of the acquisitions and its variability during consecutive tests. In order to provide the clinical practice with reliable and useful results, it is necessary to ensure that the observed variations in MEP are attributed to real changes in the ECS status of the subject and not caused by intrinsic variabilities or measurement errors. To date, many studies still insist on intricated test protocols with prolonged execution periods, requiring complex expensive systems that need a personal format in order not to originate measurement errors. A rapid acquisition method has recently been introduced to remedy some of these critical issues; this process requires the transmission of 60 to 80 stimuli every 3 to 4 seconds on a pseudorandom intensity [Mathias et al. 2014]. The sending of a reduced number of stimuli for a total test duration of less than five minutes has proved to be enough to obtain a SR curve, from which to extract reliable ECS parameters [Peri et al. 2017]. Up until now, the method has been tested only on healthy subjects in order to evaluate ECS variations on resting condition or during isometric contractions. A new recently developed challenge concerns the study of motor control strategies and of ECS variations during specific motor tasks, such as cycling [Forman et al. 2019]. The understanding of these mechanisms is fundamental, considering that the application of cycle ergometer has numerous advantages concerning walk recovering training: it reduces considerably the need for postural control; it requires less fatigue and supervision for the patient and requires muscular activation patterns similar to the walk [Ambrosini et al. 2016]. Being able to provide ECS measures during cycling is of great importance as it promotes the application of the rehabilitative technique during post-injury phase, when the subject is still not able to stand independently. The growing interest of clinical and scientific researches in analysing cortical and spinal plasticity mechanisms in different experimental conditions and pathological subjects as well as the complexity of TMS acquisitions show the importance of providing the clinician with an optimized system able to guarantee the automated handling of TMS acquisitions, following the rapid method in order to provide reproducible measurements through different sessions. Objective The goal of this dissertation is to develop a software platform able to execute TMS acquisitions with respect to the literary protocols: • Identification of the Motor Threshold (MT); • Recruitment curves at rest; • Recruitment curves during rhythmic cycling movement on a cycle ergometer • MEP measures that vary according to the stimulation conditions, such as the limb position or the undergoing workload during test; The software has been realized to perform acquisitions according to the rapid method, allowing to observe real-time data acquisition and control of the main sources of exogenous variabilities in an automated manner. Methods In order to carry out this project, a Graphic User Interface (GUI) has been developed in Matlab 2018b®. This interface is able to manage: a biphasic magnetic stimulator (Magstim Rapid2, The Magstim Company, Dyfed, UK) to send TMS pulses; a multi-channel electromyography (Porti 32™, TMSi) to register MEP in the target muscle; a neuro-navigation system that controls an optoelectronic system so as to track the position of the coil on the head of the subject and to keep the position unchanged during test; inertial XSENS sensors (Xsens Technologies BV, Enschede, Netherlands) to control the orientation of the studied limb. The platform, that is displayed in FIGURE I allows the operator to choose the number of impulses to send, the stimulation intensity, the limb position, the cycling resistance and its cadence, the number of bipolar channels to acquire and observe, and the time lapse in which to record the EMG signal. The selected target muscle is the Tibialis Anterior (TA) whose control is of great importance for walking, often damaged following pathologies such as a stroke. The GUI permits to acquire and to observe in both the lower limbs the EMG signal both of the TA and simultaneously of the Soleo (SOL), its opposing muscle, in order to compare the evoked response. Figure I: Graphic User Interface (GUI) for recruitment curves acquisition. This GUI is able to execute different types of acquisitions: o Determination of the motor threshold (MT) as the minimal stimulation value able to recall a 50 μV MEP in at least 5 tests out of 10; o SR curve acquisition, both on resting condition, when there is no activity in the target muscle, and during cycling activity on a cycle ergometer. During the latter, the software permits the operator to select the crank angle on which to send the signals. o MEP measures acquisition at changing working conditions, during which the subject receives pre-set several stimuli with the same intensity and crank angle while cycling on the cycle ergometer with a pre-set resistance and cadence. These tests do not expect to define an entire SR curve, instead the sending of a reduced number of stimuli is used to acquire a rapid estimate and to reduce muscular fatigue. o MEP measures acquisition that varies as the stimulation angle changes. During cycling the subject receives a number of impulses at the same level of intensity, but with a different crank angle. This test was designed to determine whether the MEP values on varying crank angles respond to the EMG activity of the target muscle during cycling. The following experimental protocol has been tested on two healthy subjects aged 26 years in order to examine the GUI features and the feasibility of different types of acquisition: 1) Identification of the optimal stimulation spot (hotspot); 2) Identification of the MT; 3) Acquisition of a familiarisation curve; 4) Acquisition at rest condition of a SR curve; 5) Acquisition of 2 different SR curves on a cycle ergometer, the first one with the TA in a phase of maximal muscular activity (active phase), with a leg at a stimulation of 225°, the latter while the same leg is at a crank angle of 45°, when the muscle is less active (recovery phase); 6) 4 tests, each composed of 10 stimuli at 120% MT intensity, changing the crank angle (45° or 225°) and the cycling resistance (gear 15 or gear 15). Another sort of test on cycle ergometer has been conducted on a third healthy subject, aged 26 years. During cycling on gear 15, the subject has received 145 stimuli at 120% MT, at different crank angles. This changing-angle test has been proposed in order to observe whether the MEP values follow the trend of the electromyographic (EMG) activity during cycling. The software platform has also been selected for a clinical study aiming to evaluate the neuro-plastic processes of lower limb motor control in after stroke patients, undergoing a rehabilitation treatment. Within a 4 weeks’ period, two sessions of acquisition have been conducted on an 83-years-old patient suffering from an ischemic stroke in sub-acute phase. During both the sessions, 2 SR curves have been acquired and have been examined to assess the intra-session reliability of the extracted parameters. The patient has sustained a motor rehabilitation treatment between the two sessions; the outcomes have been evaluated through clinical scale. With the help of an analysis software in Matlab, the MEP data collected from the acquisitions has been modelled using a four-parameter Bolzmann sigmoid function, and this model has been fitted to the data with a Levenberge-Marquardt nonlinear list mean-square algorithm. These parameters for a global evaluation of ECS have been extracted from the SR curves: MEPmax, I50, Slope, MT, AURC. By using Mann-Whitney test, a non-parametric statistical analysis has been conducted in order to highlight significant differences among the outcomes of the changing-resistance tests. In addition, the Spearman correlation between MEP and the level of pre-stimulus activation of the muscle. Results The goodness of the fit has been evaluated by means of the coefficient of determination (R2) and it turn out to be greater than 0.8 for all the SR curves, showing an excellent data adjustment to the model. This result is a first index of the outcomes accuracy. All tests conducted on healthy subjects have been considered practicable, both at resting and dynamic condition on cycle ergometer. An increase in the evoked potential amplitude has been highlighted following the subjects’ muscular activity intensification. At rest, the curves have shown a lower Slope, AURC and MEPmax than during cycling, with an average decrease of 103.2%, 140.1% and 187.6% respectively with respect to TA. The results for Subject 1 are showed on figure II. Moreover, during cycle ergometer tests, the ECS parameters for TA has been greater in the active phase curve than in the recovering one, with a 16.3 % increase for subject 1 and a 14.1% increase in the AURC for subject 2. A reverse behaviour has been observed for SOL, the TA opposing muscle, with an AURC increase of 24% and 5.2% changing from 225° to 45° stimulation condition for the two subjects. These considerations show a direct proportionality between ECS parameters and the pre-stimulus muscular activation level, as is observed in the current literature [Tallent et al. 2012]. FIGURE II: Subject 1’s results at resting and cycling condition. Panels A and B represent pre-stimulus EMG level during the three test conditions, panels C and D show the SR curves. The outcomes analysis of the changing-resistance tests has showed a significative increase of the average strength in the pre-stimulus EMG signal following the MEP amplitude growth. Both subjects’ outcomes highlight that TA activation level and the evoked potential size are greater when the stimulus are sent during active phase than in the recovering one (p-value< 0.001). In Subject 1, a 8.1% pre-stimulus EMG increase is measured and it caused a 9.6% growth in the MEP amplitude; in Subject 2, a 183%pre-stimulus EMG and a 378.1% MEP amplitude increases are measured. A similar increase is observed changing form gear 5 to 15 when the lower limb is at the active phase: a 11.6% increase with p-value =0.002 is found for Subject 1 and an 80.1% growth with p-value =0.003 in Subject 2’s responses. In this case, only Subject’s 1 outcomes have highlight a significative 11.6% increase 0f the pre-stimulus EMG (p-value< 0.001), whereas for Subject 2 no significative difference in the EMG signal is found between the two conditions. In changing-resistance tests, when TA is stimulated in active phase, this proportional trend is also showed by the good correlation among pre-stimulus EMG and MEPpp amplitude (Spearman’s ρ equal to 0.66 e 0.60 for subject 1 and 2, respectively, p-value <0.01). The test with variable angle stimulation has shown a high variability among the collected measurements and it has not been possible to identify a distinctive trend in relation to the crank angle. The high resistance test cannot be considered appropriate for the subject because of its prolonged duration, >20 minutes, and the excessive muscular fatigue. For these reasons, this sort of test is not considered as suitable for pathological subjects. In closing, the examined parameters of the SR curves on the post-stroke subject have revealed a proper obtainability, with a percent difference between the two tests in the same session that goes from a minimum of 0.5% to a maximum of 7.7% both pre- and post-treatment. On FIGURE III the recruitment curves obtained during pre-post treatment sessions are reported. FIGURE III: Post-ictus patient’s SR curves. On left side are showed the outcomes of the pre-treatment session, on the right side the ones assessed at the end of rehabilitation, 4 weeks apart. The longitudinal variation observed on patient have been with the Minimal Detectable Change (MDC) identified on a sample of healthy adult in a TMS’s measures reliability studio [Peri et al. 2017]. The MDC values was: 0.26 for the MEPmax (normalized with the Mmax value), 8.3 for normalized AURC, 20.5%MSO for I50 and 12.2%MSO for the MT. it is important to take into consideration that this studio has been conducted on healthy subjects, that are characterised by a better level in ECS. Between the two sessions, the MEPmax and AURC average value has increased respectively of 0.023 and 1.83 (data normalized with Mmax), while the MT and the I50 have decreased of 15.5%MSO and 14.6% compared to pre-treatment measurements The longitudinal varieties observed in the patient exceed at least by one order of magnitude the intra-session differences typical of intrinsic variabilities of the TMS measures. Considering the difference in the ECS conditions, the MT longitudinal variation overcomes the MDC values identified on healthy subjects. Therefore, this variation has confirmed an upgrading in the ECS status of the patient that also reflects an overall improvement on the clinical scales (Motricity Index: pre-treatment 64.5; post-treatment: 87.5. Motor subscale of Functional Independence Measure: pre-treatment 46; post-treatment: 63). Conclusion The hereby dissertation led to the development of a flexible software platform for TMS acquisitions. The preliminary data collected on healthy subjects are promising, confirming the wide functions of the platform and showing its usability in clinical studies. The software platform has proved to be efficient and flexible, allowing the acquisition of evoked motor potential through different types methods of acquisition and stimulation, particularly on a resting or dynamic condition, both on healthy and pathological subjects. The results, with respect to the literature, underline a correlation between the myoelectric activity level of the muscle pre-stimulus and an increase of ECS connected to the motor recovery in a subject post-stroke associated to a rehabilitative treatment. Due to the reduced number of participants, it is not possible to draw definite conclusions, rather than to obtain general indications about the coherence of the outcomes, as according to the literature. An higher sample size will be necessary in the future to demonstrate with enough statistical strength the reliability of the system. In addition, it will be required to increase the number of post-stroke patients in order to gain a more profound knowledge of the neuroplastic mechanisms that play a fundamental role during motor recovery of the lower limb in sub-acute phase. This possibility has been offered by an ongoing study on 15 post-stroke subjects approved from the Ethical Committee and directed from the IRCCS ICS Maugeri Lissone, that employs this platform for ECS measures acquisitions in pre-post rehabilitation.File | Dimensione | Formato | |
---|---|---|---|
10_2019_Cattaneo_Giacomo.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
3.28 MB
Formato
Adobe PDF
|
3.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/150119