Vortex shedding is the phenomenon observed when a fluid hits a rigid structure immersed in the fluid, causing the formation of vortices on the downwind side of the obstacle. Indeed, vortices are shed alternately from one side to the other giving rise to the von Kármán vortex street. Shifting low-pressure zones are then created on the leeward side of the structure which, in turn, generate a fluctuating force that acts orthogonally to the flow direction; we shall refer to this force as the lift. When the structure considered is the deck of a suspension bridge and the fluid flow is the wind, a consequence of the von Kármán vortex street is the oscillating movement of the deck towards the low-pressure zone, a tremor known in the literature as vortex-induced vibration. Naturally, if the input of energy from the wind into the deck grows unsteadily, violent lift forces will appear, possibly leading to the collapse of the suspension bridge. In this chaotic situation, the whole structure oscillates and both the cables and the hangers generate unexpected behaviors of the deck, such as torsional movements. The main general goal of the present research is to understand, analyze and quantify (in a suitable manner) the existing relationship between the fluid velocity, the resulting lift, and, ultimately, the attainment of the thresholds for hanger slackening and cable shortening. This thesis is organized as follows. The Introduction (Chapter I) serves as a summary, where we survey some of the existing (and sometimes contradictory) results on turbulence, fluids and structures, and suggest several natural questions whose answers would increase the mathematical understanding of these phenomena. In Chapter II we focus our attention on the structure: the Melan equation for suspension bridges is derived by assuming small displacements of the deck and inextensible hangers. We determine the thresholds for the validity of the Melan equation when the hangers slacken, thereby violating the inextensibility assumption. To this end, we preliminarily study the possible shortening of the cables: it turns out that there is a striking difference between even and odd vibrating modes since the former never shorten. These problems are studied both on beams and plates. For the remaining parts of this work we analyze exclusively the hydrodynamic component of the fluid-structure interaction problem considered. In Chapter III, a variational formulation for a class of mixed and nonstandard boundary conditions (based on the vorticity, pressure, normal and tangential components of the velocity field) on a smooth obstacle is discussed for the Stokes equations. Possible boundary data are then derived through separation of variables of biharmonic equations in a planar region having an internal concave corner. Explicit singular solutions show that, at least qualitatively, these conditions are able to reproduce vortices over the leeward wall of the obstacle. Then, Chapter IV is devoted to the study of planar viscous flows governed by the stationary Navier-Stokes equations with inhomogeneous Dirichlet boundary data in non simply connected domains. In a symmetric framework the appearance of forces is strictly related to non-uniqueness of the solution. Explicit bounds on the data ensuring uniqueness are then sought and several functional inequalities (concerning relative capacity, Sobolev embedding, the continuity constant of the Bogovskii operator) are analyzed in detail: explicit bounds are obtained. The case of "almost symmetric" frameworks is also considered. An explicit universal threshold on the Reynolds number ensuring that the flow generates no lift is obtained regardless of the shape and the nature of the obstacle. A shape optimization problem, aiming to minimize the impact of forces, is then addressed numerically. Connections of the results with elasticity and mechanics are also emphasized. Finally, several concluding remarks, open problems and future perspectives are the main content of Chapter V.
Il distacco dei vortici è il fenomeno osservato quando un fluido colpisce una struttura rigida immersa nel fluido, causando la formazione di vortici sul lato sottovento dell'ostacolo. In effetti, i vortici vengono distaccati alternatamente da un lato all'altro dando origine alla scia vorticosa di von Kármán. Vengono quindi create delle zone a pressioni istantanee oscillanti sul lato sottovento della struttura che, a loro volta, generano una forza fluttuante che agisce ortogonalmente alla direzione del flusso; ci riferiremo a questa forza come portanza. Quando la struttura considerata è l’impalcato di un ponte sospeso e il flusso del fluido è il vento, una conseguenza della scia di von Kármán è il movimento oscillante del ponte verso la zona di bassa pressione, un tremore noto in letteratura come vibrazione indotta dai vortici. Naturalmente, se l'importo di energia dal vento nella struttura aumenta in modo instabile, appariranno violente forze di sollevamento, che potrebbero portare al crollo del ponte sospeso. In questa situazione caotica, l'intera struttura oscilla e sia i cavi che i pendini generano comportamenti inaspettati del ponte, come i movimenti torsionali. Il principale obiettivo generale della presente ricerca è comprendere, analizzare e quantificare (in modo adeguato) la relazione esistente tra la velocità del fluido, il sollevamento risultante e, in definitiva, il raggiungimento delle soglie per l’allentamento dei pendini e l'accorciamento del cavo. Questa tesi è organizzata come segue. L'Introduzione (Capitolo I) serve da sommario, dove esaminiamo alcuni dei risultati esistenti (e talvolta contraddittori) su turbolenza, fluidi e strutture, e suggeriamo alcune domande naturali le cui risposte aumenterebbero la comprensione matematica di questi fenomeni. Nel Capitolo II focalizziamo la nostra attenzione sulla struttura: l'equazione di Melan per i ponti sospesi è ottenuta assumendo piccoli spostamenti del ponte e pendini inestensibili. Determiniamo le soglie per la validità dell'equazione di Melan quando i pendini si allentano, violando così l'ipotesi di inestensibilità. A tal fine, studiamo in via preliminare l'eventuale accorciamento dei cavi: si scopre che esiste una notevole differenza tra i modi di vibrazione pari e dispari poiché i primi non generano accorciamento. Questi problemi sono studiati sia su travi che su piastre. Per le restanti parti di questo lavoro analizziamo esclusivamente la componente idrodinamica del problema di interazione fluido-struttura considerato. Nel Capitolo III, una formulazione variazionale per una classe di condizioni al contorno miste e non standard (basate sulla vorticità, pressione, componenti normali e tangenziali del campo di velocità) su un ostacolo liscio è discussa per le equazioni di Stokes. Condizioni al bordo ammissibili vengono quindi ottenute attraverso il metodo di separazione delle variabili per equazioni biarmoniche in una regione planare avente un angolo concavo interno. Soluzioni singolari esplicite mostrano che, almeno qualitativamente, queste condizioni sono in grado di riprodurre i vortici sul muro sottovento dell'ostacolo. Il Capitolo IV è dedicato allo studio di flussi viscosi planari governati dalle equazioni stazionarie di Navier-Stokes con dati al bordo del tipo Dirichlet non omogenei in domini non semplicemente connessi. In un quadro simmetrico la comparsa di forze è strettamente correlata alla non unicità della soluzione. Vengono quindi ricercati limiti espliciti sui dati che garantiscono l'unicità e sono analizzate in dettaglio diverse disuguaglianze funzionali (riguardanti la capacità relativa, le immersioni di Sobolev, la costante di continuità dell'operatore di Bogovskii): si ottengono limiti espliciti. Viene anche considerato il caso di quadri "quasi simmetrici". Si ottiene una soglia universale esplicita sul numero di Reynolds che garantisce che il flusso non generi alcuna portanza indipendentemente dalla forma e dalla natura dell'ostacolo. Un problema di ottimizzazione della forma, che mira a ridurre al minimo l'impatto delle forze sul ostacolo, è affrontato numericamente. Vengono inoltre sottolineate le connessioni dei risultati con l’elasticità e la meccanica. Infine, diverse conclusioni, problemi aperti e prospettive future sono il contenuto principale del Capitolo V.
Steady Navier-Stokes equations in domains with obstacle and applications to the stability of suspensions bridges
SPERONE MARTÍ, GIANMARCO SILVIO
Abstract
Vortex shedding is the phenomenon observed when a fluid hits a rigid structure immersed in the fluid, causing the formation of vortices on the downwind side of the obstacle. Indeed, vortices are shed alternately from one side to the other giving rise to the von Kármán vortex street. Shifting low-pressure zones are then created on the leeward side of the structure which, in turn, generate a fluctuating force that acts orthogonally to the flow direction; we shall refer to this force as the lift. When the structure considered is the deck of a suspension bridge and the fluid flow is the wind, a consequence of the von Kármán vortex street is the oscillating movement of the deck towards the low-pressure zone, a tremor known in the literature as vortex-induced vibration. Naturally, if the input of energy from the wind into the deck grows unsteadily, violent lift forces will appear, possibly leading to the collapse of the suspension bridge. In this chaotic situation, the whole structure oscillates and both the cables and the hangers generate unexpected behaviors of the deck, such as torsional movements. The main general goal of the present research is to understand, analyze and quantify (in a suitable manner) the existing relationship between the fluid velocity, the resulting lift, and, ultimately, the attainment of the thresholds for hanger slackening and cable shortening. This thesis is organized as follows. The Introduction (Chapter I) serves as a summary, where we survey some of the existing (and sometimes contradictory) results on turbulence, fluids and structures, and suggest several natural questions whose answers would increase the mathematical understanding of these phenomena. In Chapter II we focus our attention on the structure: the Melan equation for suspension bridges is derived by assuming small displacements of the deck and inextensible hangers. We determine the thresholds for the validity of the Melan equation when the hangers slacken, thereby violating the inextensibility assumption. To this end, we preliminarily study the possible shortening of the cables: it turns out that there is a striking difference between even and odd vibrating modes since the former never shorten. These problems are studied both on beams and plates. For the remaining parts of this work we analyze exclusively the hydrodynamic component of the fluid-structure interaction problem considered. In Chapter III, a variational formulation for a class of mixed and nonstandard boundary conditions (based on the vorticity, pressure, normal and tangential components of the velocity field) on a smooth obstacle is discussed for the Stokes equations. Possible boundary data are then derived through separation of variables of biharmonic equations in a planar region having an internal concave corner. Explicit singular solutions show that, at least qualitatively, these conditions are able to reproduce vortices over the leeward wall of the obstacle. Then, Chapter IV is devoted to the study of planar viscous flows governed by the stationary Navier-Stokes equations with inhomogeneous Dirichlet boundary data in non simply connected domains. In a symmetric framework the appearance of forces is strictly related to non-uniqueness of the solution. Explicit bounds on the data ensuring uniqueness are then sought and several functional inequalities (concerning relative capacity, Sobolev embedding, the continuity constant of the Bogovskii operator) are analyzed in detail: explicit bounds are obtained. The case of "almost symmetric" frameworks is also considered. An explicit universal threshold on the Reynolds number ensuring that the flow generates no lift is obtained regardless of the shape and the nature of the obstacle. A shape optimization problem, aiming to minimize the impact of forces, is then addressed numerically. Connections of the results with elasticity and mechanics are also emphasized. Finally, several concluding remarks, open problems and future perspectives are the main content of Chapter V.File | Dimensione | Formato | |
---|---|---|---|
TesiSperone.pdf
accessibile in internet per tutti
Dimensione
7.23 MB
Formato
Adobe PDF
|
7.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/166522