This thesis deals with the development of novel algorithms and methodologies for the optimal management and control of thermal and electrical energy units operating in a networked configuration. The transformation of the energy and utility industry is characterized by a transition from centralized to distributed generation, that requires the introduction of new paradigms for the energy management and control. Multiple and integrated energy vectors - i.e., electrical, thermal, etc. - must be considered together. On-site generation complements the standard utility sources. This enhances the flexibility of the generation, as well as the complexity of the overall system. The smart thermal-energy grid is a large-scale networked system, where a set of common resources are shared by the producers and where the main objective is to sustain efficiently the time-varying demand of different forms required by a set of consumers, providing the optimal scheduling and the economic dispatch of the units. The integrated multi-utility configuration requires also a dynamic control of the operating point of each unit, considering the interaction among the subsystems and the fluctuation of the demands. The aim of the work is to foster the creation of a smart thermal-energy grid (smart-TEG), by providing supporting tools for the modeling of subsystems and their optimal control and coordination. The configuration and the dimension of the problem intrinsically pose the main issue of its tractability with standard centralized approaches. Therefore, the distribution of control intelligence is the key point to reach a plant-wide dynamic optimal control. Hierarchical and distributed schemes are proposed in this thesis to address optimally the management and control issues of the smart-TEG. This includes advanced distributed optimization schemes accounting for mixed integer variables and predictive and constrained control solutions. Real industrial case-studies provide the specifications, data for modeling identification and parameter estimation, and offer suitable test-beds for the validation of the proposed control schemes. The performances of the proposed algorithms are shown in simulations and, whenever possible, with on-field testing.
Questa tesi tratta lo sviluppo di nuovi algoritmi e metodologie per la gestione e il controllo ottimale di unità di generazione elettrica e termica operanti in una configurazione a rete. La trasformazione dell’industria energetica è caratterizzata da una transizione dalla generazione centralizzata a quella distribuita, la quale richiede l’introduzione di nuovi paradigmi per la gestione e il controllo dell’energia. Vettori energetici di natura diversa, quali elettrica e termica, devono essere considerati in modo integrato. La generazione locale, inoltre, diviene complementare alle fonti di generazione standard. Questo incrementa la flessibilità della generazione, così come la complessità del sistema. La rete intelligente termo-elettrica è un sistema di larga scala, dove un set di risorse comuni sono condivise dai produttori e dove l’obiettivo principale è quello di sostenere efficientemente la domanda tempo-variante, di diversi flussi energetici, richiesta da un set di consumatori, fornendo la schedulazione e il dispacciamento economico ottimali delle unità. Questa configurazione multi-utility integrata richiede anche il controllo dinamico del punto operativo di ciascuna unità, considerando l’interazione tra i sottosistemi e la fluttuazione della domanda. L’obiettivo del lavoro è di favorire la creazione di una rete intelligente termo-elettrica (smart-TEG), fornendo gli strumenti a supporto della modellazione dei sottosistemi e per il loro controllo e coordinamento ottimale. La configurazione e le dimensioni del problema pongono intrinsecamente la questione principale della sua trattabilità con approcci centralizzati standard. Perciò, la distribuzione dell’intelligenza di controllo diventa il punto chiave per raggiungere un controllo dinamico ottimale a livello di impianto. Schemi gerarchici e distribuiti sono proposti in questa tesi per indirizzare in modo ottimo le questioni di gestione e controllo della smart-TEG. Questo include avanzati schemi di ottimizzazione distribuita che considerano variabili miste-intere e soluzioni di controllo predittive e vincolate. Casi-studio industriali forniscono le specifiche, i dati per la modellazione, identificazione e la stima dei parametri, così come offrono adeguati banchi di prova per la validazione degli schemi di controllo. Le performance degli algoritmi proposti sono mostrate in simulazione e, qualora possibile, con test sul campo.
Optimization and control of smart thermal-energy grids
Spinelli, Stefano
2020/2021
Abstract
This thesis deals with the development of novel algorithms and methodologies for the optimal management and control of thermal and electrical energy units operating in a networked configuration. The transformation of the energy and utility industry is characterized by a transition from centralized to distributed generation, that requires the introduction of new paradigms for the energy management and control. Multiple and integrated energy vectors - i.e., electrical, thermal, etc. - must be considered together. On-site generation complements the standard utility sources. This enhances the flexibility of the generation, as well as the complexity of the overall system. The smart thermal-energy grid is a large-scale networked system, where a set of common resources are shared by the producers and where the main objective is to sustain efficiently the time-varying demand of different forms required by a set of consumers, providing the optimal scheduling and the economic dispatch of the units. The integrated multi-utility configuration requires also a dynamic control of the operating point of each unit, considering the interaction among the subsystems and the fluctuation of the demands. The aim of the work is to foster the creation of a smart thermal-energy grid (smart-TEG), by providing supporting tools for the modeling of subsystems and their optimal control and coordination. The configuration and the dimension of the problem intrinsically pose the main issue of its tractability with standard centralized approaches. Therefore, the distribution of control intelligence is the key point to reach a plant-wide dynamic optimal control. Hierarchical and distributed schemes are proposed in this thesis to address optimally the management and control issues of the smart-TEG. This includes advanced distributed optimization schemes accounting for mixed integer variables and predictive and constrained control solutions. Real industrial case-studies provide the specifications, data for modeling identification and parameter estimation, and offer suitable test-beds for the validation of the proposed control schemes. The performances of the proposed algorithms are shown in simulations and, whenever possible, with on-field testing.File | Dimensione | Formato | |
---|---|---|---|
Spinelli_Optimization and control of smart thermal energy grids.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
9.49 MB
Formato
Adobe PDF
|
9.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/169580