Energy communities are becoming a key element to enhance the renewable energy transition, as they can generate environmental, economic, and social benefits. Sector coupling contributes too, by being able to provide flexibility to the electrical grid. In this work, a bottom-up Single-Objective optimization model of an energy community is developed, by using the Oemof solph and the Oemof thermal Python packages. The focus is (i) on the thermal sector integration and electrification, (ii) on the detailed modelling of space heating, cooling and domestic hot water production devices, (iii) on the thermal storage modelling, and (iv) on the energy community characterization. Also, the demand side management is implemented for all the demand profiles. The model has been applied to two case studies, each one articulated in different configurations, to explore its potentialities as well as to investigate the impact of thermal sector electrification and integration in energy communities, together with the one of technical and flexible operation choices. Results show the impact of the technical settings, which lead to different coefficients of performance of heat pumps and so different electrical consumptions, different optimal capacities of the photovoltaic plant and the thermal energy storage, and differences in the electricity dispatch, which in some cases valorizes the sharing while in others the self-consumption. Investments on energy communities with thermal sector electrification resulted to be profitable, and relevant advantages were demonstrated, both in economic, emissions and energy dispatch terms. The electrification of the thermal sector emerges as the optimal solution too in case the photovoltaic plant is not activated. On the contrary, solar thermal collectors have not been evaluated as a profitable investment, and their contribution for DHW production was limited.

Le comunità energetiche rinnovabili stanno diventando elementi chiave della transizione energetica rinnovabile, dal momento che sono in grado di generare benefici economici, ambientali e sociali. Anche il sector coupling è emerso come elemento utile, essendo in grado di fornire flessibilità alla rete elettrica. In questo lavoro viene sviluppato un modello di ottimizzazione bottom-up e Single-Objective di una comunità energetica, utilizzando i pacchetti di Python Oemof solph e Oemof thermal. L’attenzione è (i) sull’integrazione e l’elettrificazione del settore termico, (ii) il modellamento dettagliato dei dispositivi per la produzione di riscaldamento, raffrescamento ed acqua calda, come (iii) sullo sviluppo dell’accumulo termico e (iv) sulla caratterizzazione dettagliata della comunità energetica. Il Demand Side Management viene inoltre integrato per tutti i profili di domanda. Il modello è stato applicato a due diversi casi studio, ognuno articolato in diverse configurazioni, in modo da esplorarne le potenzialità e investigare l’impatto dell’elettrificazione e integrazione del settore termico nelle comunità energetiche, nonché di quello delle scelte tecniche e di flessibilità operativa. I risultati dimostrano l'impatto delle impostazioni tecniche, che portano a diversi coefficienti di performance delle pompe di calore, e quindi a diversi consumi elettrici, capacità ottime installate di fotovoltaico e accumulo termico, e differenze nella distribuzione elettrica, che in alcuni casi valorizza la condivisione mentre in altri l’autoconsumo. Gli investimenti nelle comunità energetiche con l’integrazione del settore termico elettrificato sono risultati positivi, e diversi vantaggi sono stati dimostrati sia in ambito economico, che in termini di emissioni e distribuzione elettrica. L’elettrificazione del settore termico è emersa come l’opzione migliore anche nel caso in cui l’impianto fotovoltaico fosse disattivato. Al contrario, i collettori solari termici non sono stati valutati come un investimento redditizio, ed il loro contributo nella produzione di acqua calda è risultato limitato.

Optimization model of an energy community system with focus on the thermal sector electrification

Calabria, Francesca
2021/2022

Abstract

Energy communities are becoming a key element to enhance the renewable energy transition, as they can generate environmental, economic, and social benefits. Sector coupling contributes too, by being able to provide flexibility to the electrical grid. In this work, a bottom-up Single-Objective optimization model of an energy community is developed, by using the Oemof solph and the Oemof thermal Python packages. The focus is (i) on the thermal sector integration and electrification, (ii) on the detailed modelling of space heating, cooling and domestic hot water production devices, (iii) on the thermal storage modelling, and (iv) on the energy community characterization. Also, the demand side management is implemented for all the demand profiles. The model has been applied to two case studies, each one articulated in different configurations, to explore its potentialities as well as to investigate the impact of thermal sector electrification and integration in energy communities, together with the one of technical and flexible operation choices. Results show the impact of the technical settings, which lead to different coefficients of performance of heat pumps and so different electrical consumptions, different optimal capacities of the photovoltaic plant and the thermal energy storage, and differences in the electricity dispatch, which in some cases valorizes the sharing while in others the self-consumption. Investments on energy communities with thermal sector electrification resulted to be profitable, and relevant advantages were demonstrated, both in economic, emissions and energy dispatch terms. The electrification of the thermal sector emerges as the optimal solution too in case the photovoltaic plant is not activated. On the contrary, solar thermal collectors have not been evaluated as a profitable investment, and their contribution for DHW production was limited.
CASALICCHIO, VALERIA
ING - Scuola di Ingegneria Industriale e dell'Informazione
28-apr-2022
2021/2022
Le comunità energetiche rinnovabili stanno diventando elementi chiave della transizione energetica rinnovabile, dal momento che sono in grado di generare benefici economici, ambientali e sociali. Anche il sector coupling è emerso come elemento utile, essendo in grado di fornire flessibilità alla rete elettrica. In questo lavoro viene sviluppato un modello di ottimizzazione bottom-up e Single-Objective di una comunità energetica, utilizzando i pacchetti di Python Oemof solph e Oemof thermal. L’attenzione è (i) sull’integrazione e l’elettrificazione del settore termico, (ii) il modellamento dettagliato dei dispositivi per la produzione di riscaldamento, raffrescamento ed acqua calda, come (iii) sullo sviluppo dell’accumulo termico e (iv) sulla caratterizzazione dettagliata della comunità energetica. Il Demand Side Management viene inoltre integrato per tutti i profili di domanda. Il modello è stato applicato a due diversi casi studio, ognuno articolato in diverse configurazioni, in modo da esplorarne le potenzialità e investigare l’impatto dell’elettrificazione e integrazione del settore termico nelle comunità energetiche, nonché di quello delle scelte tecniche e di flessibilità operativa. I risultati dimostrano l'impatto delle impostazioni tecniche, che portano a diversi coefficienti di performance delle pompe di calore, e quindi a diversi consumi elettrici, capacità ottime installate di fotovoltaico e accumulo termico, e differenze nella distribuzione elettrica, che in alcuni casi valorizza la condivisione mentre in altri l’autoconsumo. Gli investimenti nelle comunità energetiche con l’integrazione del settore termico elettrificato sono risultati positivi, e diversi vantaggi sono stati dimostrati sia in ambito economico, che in termini di emissioni e distribuzione elettrica. L’elettrificazione del settore termico è emersa come l’opzione migliore anche nel caso in cui l’impianto fotovoltaico fosse disattivato. Al contrario, i collettori solari termici non sono stati valutati come un investimento redditizio, ed il loro contributo nella produzione di acqua calda è risultato limitato.
File allegati
File Dimensione Formato  
2022_04_Calabria_Summary.pdf

Open Access dal 12/04/2023

Descrizione: Executive Summary
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF Visualizza/Apri
2022_04_Calabria.pdf

Open Access dal 12/04/2023

Descrizione: Thesis
Dimensione 6.87 MB
Formato Adobe PDF
6.87 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/187557