Molecular aggregates are organic materials usually composed of dye molecules held together by non-covalent forces. These aggregates exhibit unique photo-physical properties that differ from isolated molecules, making them fundamental in natural light-harvesting complexes and emerging technologies such as new generation sensors, magnets, and optoelectronics devices. However, studying the spatial structure of molecular aggregates at the single molecule level remains challenging due to the limitations of current optical investigation techniques. Quantum computers offer a potential solution for simulating these systems thanks to their advantage (speed-up) in studying quantum many-body systems. As an example in this work, hybrid quantum-classical algorithms, including the Variational Quantum Eigensolver (VQE) and the Variational Quantum Deflation (VQD) algorithm, were employed to compute, with both simulators and real IBM quantum processors, the excited energy spectra of dimer (two molecules) and tetramer (four molecules) aggregate systems. Limitations and perspectives of currently available Noisy Intermediate Scale Quantum (NISQ) era resources were discussed, showing the necessity of further progress in the field and the development of Fault Tolerant quantum devices.

Gli aggregati molecolari sono materiali organici composti generalmente da molecole di colorante tenute assieme da forze non-covalenti. Questi aggregati mostrano proprietà foto-fisiche uniche, diverse dalle molecole isolate, le quali li rendono fondamentali in natura nei complessi molecolari atti alla fotosintesi clorofiliana e in tecnologie emergenti come le nuove generazioni di sensori, magneti e dispositivi optoelettronici. Tuttavia, lo studio della struttura spaziale degli aggregati molecolari alla scala della singola molecola rimane una sfida a causa delle limitazioni delle attuali tecniche di indagine ottica. I computer quantistici offrono una potenziale soluzione per simulare questi sistemi grazie al loro vantaggio (velocizzazione) nello studio di sistemi quantistici "multy-body". Come esempio in questo lavoro, sono stati impiegati algoritmi ibridi quantistico-classici, tra cui il "Variational Quantum Eigensolver (VQE)" e l'algoritmo "Variational Quantum Deflation (VQD)", per calcolare, sia con simulatori che con processori quantistici IBM, gli spettri energetici eccitati dei sistemi aggregati dimero (due molecole) e tetramero (quattro molecole). Le limitazioni e le prospettive delle risorse disponibili nell'attuale "Noisy Intermediate Scale Quantum (NISQ)" era sono state discusse, dimostrando la necessità di ulteriore progresso del settore e lo sviluppo di dispositivi quantistici "Fault Tolerant".

exploring hybrid quantum-classical algorithms for calculating energy spectra of molecular aggregates

Ferrone, Riccardo
2021/2022

Abstract

Molecular aggregates are organic materials usually composed of dye molecules held together by non-covalent forces. These aggregates exhibit unique photo-physical properties that differ from isolated molecules, making them fundamental in natural light-harvesting complexes and emerging technologies such as new generation sensors, magnets, and optoelectronics devices. However, studying the spatial structure of molecular aggregates at the single molecule level remains challenging due to the limitations of current optical investigation techniques. Quantum computers offer a potential solution for simulating these systems thanks to their advantage (speed-up) in studying quantum many-body systems. As an example in this work, hybrid quantum-classical algorithms, including the Variational Quantum Eigensolver (VQE) and the Variational Quantum Deflation (VQD) algorithm, were employed to compute, with both simulators and real IBM quantum processors, the excited energy spectra of dimer (two molecules) and tetramer (four molecules) aggregate systems. Limitations and perspectives of currently available Noisy Intermediate Scale Quantum (NISQ) era resources were discussed, showing the necessity of further progress in the field and the development of Fault Tolerant quantum devices.
ING - Scuola di Ingegneria Industriale e dell'Informazione
4-mag-2023
2021/2022
Gli aggregati molecolari sono materiali organici composti generalmente da molecole di colorante tenute assieme da forze non-covalenti. Questi aggregati mostrano proprietà foto-fisiche uniche, diverse dalle molecole isolate, le quali li rendono fondamentali in natura nei complessi molecolari atti alla fotosintesi clorofiliana e in tecnologie emergenti come le nuove generazioni di sensori, magneti e dispositivi optoelettronici. Tuttavia, lo studio della struttura spaziale degli aggregati molecolari alla scala della singola molecola rimane una sfida a causa delle limitazioni delle attuali tecniche di indagine ottica. I computer quantistici offrono una potenziale soluzione per simulare questi sistemi grazie al loro vantaggio (velocizzazione) nello studio di sistemi quantistici "multy-body". Come esempio in questo lavoro, sono stati impiegati algoritmi ibridi quantistico-classici, tra cui il "Variational Quantum Eigensolver (VQE)" e l'algoritmo "Variational Quantum Deflation (VQD)", per calcolare, sia con simulatori che con processori quantistici IBM, gli spettri energetici eccitati dei sistemi aggregati dimero (due molecole) e tetramero (quattro molecole). Le limitazioni e le prospettive delle risorse disponibili nell'attuale "Noisy Intermediate Scale Quantum (NISQ)" era sono state discusse, dimostrando la necessità di ulteriore progresso del settore e lo sviluppo di dispositivi quantistici "Fault Tolerant".
File allegati
File Dimensione Formato  
Exploring_Hybrid_Quantum_Classical_Algorithms_for_Calculating_Energy_Spectra_of_Molecular_Aggregates.pdf

accessibile in internet per tutti

Descrizione: Tesi - File principale
Dimensione 14.7 MB
Formato Adobe PDF
14.7 MB Adobe PDF Visualizza/Apri
Executive_Summary___Exploring_Hybrid_Quantum_Classical_Algorithms_for_Calculating_Energy_Spectra_of_Molecular_Aggregates.pdf

accessibile in internet per tutti

Descrizione: Tesi - Executive Summary
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/204195