A Tokamak is an experimental configuration studied to develop a thermonuclear fusion reactor where an hot plasma is magnetically confined. Tokamak plasmas are affected by magneto-hydrodynamic instabilities, such as the neoclassical tearing modes (NTM), which can degrade the confinement and compromise the production of energy. If not controlled, NTM can also lead to an abrupt termination capable of damaging the Tokamak. High power beams (ECH) at the electron cyclotron (EC) frequency can suppress NTMs if precisely deposited inside the instability. Diagnostics and control strategies are developed for early NTM reaction and suppression, crucial for future reactors like DEMO. The control strategies proposed in this thesis work are based on the (quasi) reciprocity of emission-absorption of radiation at the EC frequency in the plasma. The reciprocity simplify the diagnostics system needed to control the aiming of the injected power, using only Electron Cyclotron Emission (ECE) diagnostics, with suitable placement of sensors. ECE radiometers can be placed in the same antenna emitting the ECH (In-Line) or in nearby antennas (Quasi-In-Line). For a model of a DEMO-like tokamak plasma, the ECE radiometer has been characterized and optimized to estimate the NTM position for both a static (Quasi-In-Line) and mobile (In-Line) antenna. A self tuning fuzzy-PI controller was designed for the In-Line configuration, ensuring NTM control with the ECH antenna in different operational scenarios. A novel Quasi-In-Line configuration made up of one ECH steerable antenna and a set of fixed ECE antennas has been developed. The minimum set of ECE antennas to fit the requested angular resolution has been addressed. Finally, the comparison between the In-Line and Quasi-In-Line configurations provided insights into their respective strengths and weaknesses, offering a evaluation of both solutions for controlling NTM. The fuzzy-PI controller and the Quasi-In-Line configuration open new perspectives for ensuring stability and performance in future fusion reactors, advancing efforts towards the realization of fusion energy.
Il Tokamak è una configurazione sperimentale studiata per lo sviluppo di reattori a fusione termonucleare, in cui un plasma ad alta temperatura è confinato magneticamente. I plasmi nei Tokamak sono soggetti a instabilità magnetoidrodinamiche, come i \textit{neoclassical tearing modes} (NTM), che possono compromettere il confinamento e la produzione di energia. Se non controllati gli NTM possono portare a disruzione, danneggiando il Tokamak. Gli NTM possono essere soppressi attraverso l'applicazione di fasci ad alta potenza (ECH) alla frequenza ciclotronica elettronica (EC) se depositati , all'interno dell’instabilità. In questo contesto vengono sviluppate diagnostiche e strategie di controllo, cruciali per i futuri reattori come DEMO. Le strategie di controllo proposte nella tesi si basano sulla (quasi) reciprocità nell'emissione-assorbimento di radiazione a frequenza EC nel plasma. Questo principio semplifica il sistema diagnostico necessario per controllare la direzione in cui viene iniettata la potenza, consentendo l'uso di diagnostica ad emissione ciclotronica elettrionica (ECE), con sensori opportunamente posizionati. I radiometri ECE possono essere collocati nell'antenna ECH (In-Line) o in antenne vicine (Quasi-In-Line). Per un modello di plasma simile a quello di DEMO, il radiometro ECE è stato caratterizzato e ottimizzato per stimare la posizione degli NTM sia per un'antenna statica (Quasi-In-Line) che mobile (In-Line). È stato sviluppato un controllore fuzzy-PI adattivo per la configurazione In-Line, che garantisce il controllo degli NTM con l'antenna ECH in diversi scenari operativi. È stata proposta una nuova configurazione Quasi-In-Line composta da un'antenna ECH orientabile e un set di antenne fisse ECE. È stato valutato il numero minimo di antenne ECE per ottenere la risoluzione angolare richiesta. Il confronto tra le configurazioni In-Line e Quasi-In-Line ne ha evidenziato i rispettivi vantaggi e svantaggi per il controllo degli NTM. Il controllore fuzzy-PI e la configurazione Quasi-In-Line aprono nuove prospettive per garantire stabilità e prestazioni nei futuri reattori a usione, contribuendo ad avanzamenti verso la produzione di energia da fusione.
Strategies to control the deposition of high power beams at the electron cyclotron frequency in Tokamaks
Pecorelli, Andrea
2022/2023
Abstract
A Tokamak is an experimental configuration studied to develop a thermonuclear fusion reactor where an hot plasma is magnetically confined. Tokamak plasmas are affected by magneto-hydrodynamic instabilities, such as the neoclassical tearing modes (NTM), which can degrade the confinement and compromise the production of energy. If not controlled, NTM can also lead to an abrupt termination capable of damaging the Tokamak. High power beams (ECH) at the electron cyclotron (EC) frequency can suppress NTMs if precisely deposited inside the instability. Diagnostics and control strategies are developed for early NTM reaction and suppression, crucial for future reactors like DEMO. The control strategies proposed in this thesis work are based on the (quasi) reciprocity of emission-absorption of radiation at the EC frequency in the plasma. The reciprocity simplify the diagnostics system needed to control the aiming of the injected power, using only Electron Cyclotron Emission (ECE) diagnostics, with suitable placement of sensors. ECE radiometers can be placed in the same antenna emitting the ECH (In-Line) or in nearby antennas (Quasi-In-Line). For a model of a DEMO-like tokamak plasma, the ECE radiometer has been characterized and optimized to estimate the NTM position for both a static (Quasi-In-Line) and mobile (In-Line) antenna. A self tuning fuzzy-PI controller was designed for the In-Line configuration, ensuring NTM control with the ECH antenna in different operational scenarios. A novel Quasi-In-Line configuration made up of one ECH steerable antenna and a set of fixed ECE antennas has been developed. The minimum set of ECE antennas to fit the requested angular resolution has been addressed. Finally, the comparison between the In-Line and Quasi-In-Line configurations provided insights into their respective strengths and weaknesses, offering a evaluation of both solutions for controlling NTM. The fuzzy-PI controller and the Quasi-In-Line configuration open new perspectives for ensuring stability and performance in future fusion reactors, advancing efforts towards the realization of fusion energy.File | Dimensione | Formato | |
---|---|---|---|
2023_10_Pecorelli_01.pdf
non accessibile
Descrizione: Thesis
Dimensione
7.73 MB
Formato
Adobe PDF
|
7.73 MB | Adobe PDF | Visualizza/Apri |
2023_10_Pecorelli_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
891.17 kB
Formato
Adobe PDF
|
891.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/210664