This thesis presents the design and implementation of an innovative, robust control strategy and relative navigation for spacecraft rendezvous operations, in the context of active debris removal (ADR) applications. The rapid growth of the space race in recent years has resulted in an exponential increase in space debris within Earth's orbit, underscoring the urgency for the development of novel, autonomous, and efficient technologies for their removal. The work begins with a comprehensive literature review on orbit relative motion models and hybrid dynamical systems. Considering a hybrid systems framework, the control strategy is developed under the assumptions of the Hill-Clohessy-Wiltshire model. This is achieved by reformulating the control problem as a Linear Matrix Inequality (LMI), with additional measures taken to enhance its robustness against noise originating from the real system. A more realistic model is used for simulations, with the dynamics of both chaser and target being propagated through a two-body problem model. Regarding the navigation system, a sensor is integrated in the chaser vehicle to retrieve measurements of the target location, along with a Kalman filter for relative position and velocity estimation. An initial analysis is conducted considering the rendezvous operation with a derelict spacecraft placed in a Keplerian circular orbit. Subsequent analyses are carried out to assess the model limitations when elliptical orbits are taken into account. In conclusion, a comparative analysis with Model Predictive Control (MPC), a popular method in the rendezvous literature, is conducted, highlighting the differences with the proposed controller, namely, simplicity and ease of computation of the LMI approach versus optimality and implicit treatment of constraints of the MPC. The results are validated using the Monte Carlo method, and then discussed, leading to conclusions and suggestions for possible future developments of the proposed work.
Questa tesi presenta il disegno e l'implementazione di un'innovativa strategia di controllo robusto e della navigazione relativa per operazioni di rendezvous satellitare, nel campo delle applicazioni per la rimozione attiva di detriti spaziali (ADR). La rapida crescita della corsa allo spazio degli ultimi anni ha portato con sè un aumento esponenziale dei detriti presenti in orbita terrestre, evidenziando l'importanza dello sviluppo di nuove tecnologie autonome per la loro rimozione. Le prima fase del lavoro ha riguardato un'opera di revisione dei modelli per il moto relativo in orbita e dei sistemi dinamici ibridi. Considerando la struttura di un sistema ibrido, la strategia di controllo è stata sviluppata sotto le ipotesi del modello di Hill-Clohessy-Wiltshire, riformulando il problema del controllo in termini di disuguaglianze matriciali lineari (LMI). Ulteriori misure per aumentare la sua robustezza rispetto ai vari disturbi provenienti dal sistema reale sono state poi prese in considerazione. Un modello più realistico è stato utilizzato per le simulazioni, propagando la dinamica dei satelliti chaser e target attraverso il problema dei due corpi. Riguardo al sistema di navigazione, è stato sviluppato un sensore ottico a bordo del satellite chaser per misurare la posizione del target, assieme a un filtro di Kalman per la stima di posizione e velocità relative. Una prima analisi del modello si basa sul rendezvous con un detrito spaziale posizionato in orbita Kepleriana circolare. Ulteriori analisi sono state poi condotte per valutare le limitazioni del modello nel caso in cui vengano considerate delle orbite ellittiche. Un ultimo approfondimento riguarda il confronto con il noto controllo predittivo (MPC), molto popolare nelle operazioni di rendezvous satellitare, mettendo in evidenza le differenze con il controllo proposto, ovvero la semplicità e la facilità di calcolo del LMI rispetto all'ottimalità e al trattamento implicito dei vincoli del MPC. I risultati sono stati validati e commentati tramite il metodo Monte Carlo, traendo delle conclusioni e proponendo delle possibili soluzioni per futuri sviluppi del lavoro proposto.
Hybrid model for robust impulsive control and realistic relative navigation applied to active debris removal operations
Napoletano, Gianluca
2022/2023
Abstract
This thesis presents the design and implementation of an innovative, robust control strategy and relative navigation for spacecraft rendezvous operations, in the context of active debris removal (ADR) applications. The rapid growth of the space race in recent years has resulted in an exponential increase in space debris within Earth's orbit, underscoring the urgency for the development of novel, autonomous, and efficient technologies for their removal. The work begins with a comprehensive literature review on orbit relative motion models and hybrid dynamical systems. Considering a hybrid systems framework, the control strategy is developed under the assumptions of the Hill-Clohessy-Wiltshire model. This is achieved by reformulating the control problem as a Linear Matrix Inequality (LMI), with additional measures taken to enhance its robustness against noise originating from the real system. A more realistic model is used for simulations, with the dynamics of both chaser and target being propagated through a two-body problem model. Regarding the navigation system, a sensor is integrated in the chaser vehicle to retrieve measurements of the target location, along with a Kalman filter for relative position and velocity estimation. An initial analysis is conducted considering the rendezvous operation with a derelict spacecraft placed in a Keplerian circular orbit. Subsequent analyses are carried out to assess the model limitations when elliptical orbits are taken into account. In conclusion, a comparative analysis with Model Predictive Control (MPC), a popular method in the rendezvous literature, is conducted, highlighting the differences with the proposed controller, namely, simplicity and ease of computation of the LMI approach versus optimality and implicit treatment of constraints of the MPC. The results are validated using the Monte Carlo method, and then discussed, leading to conclusions and suggestions for possible future developments of the proposed work.File | Dimensione | Formato | |
---|---|---|---|
Executive_Summary_LMI_Control_ADR.pdf
accessibile in internet per tutti
Descrizione: Executive summary of the thesis
Dimensione
832.33 kB
Formato
Adobe PDF
|
832.33 kB | Adobe PDF | Visualizza/Apri |
Master_Thesis__LMI_Control_ADR.pdf
accessibile in internet per tutti
Descrizione: Thesis work
Dimensione
4.11 MB
Formato
Adobe PDF
|
4.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/215198