The optimal design of lightweight structural components subjected to single and multiple loading conditions is explored through a multi-scale topology optimization framework. The challenges posed by the incorporation of graded infills and the enforcement of displacement constraints are addressed. The methodology relies on the formulation of multi-constrained minimum volume problems of topology optimization which are solved via an augmented Lagrangian method, as inspired by recent advancements in stress-based structural optimization. The assessment of the structural performances of 2D/3D isotropic microstructures given by hexagonal close-packed arrangements of circular/spherical holes in a continuous medium is provided. Numerical homogenization is used to derive the macroscopic elastic properties of several type of isotropic and orthotropic cells that can play as an infill for lightweight structures. The adoption of suitable interpolation laws for managing the design of two-material structures made by a full phase and a graded one, along with void, is investigated. The thesis delves into the design of composite structures not only by considering deterministic loads, but also by providing a focus on the impact of uncertainties that may affect the loading amplitude. Sequential convex programming is utilized to tackle the arising multi-constrained problems, considering both deterministic and probabilistic displacement enforcements. The findings highlight the effectiveness and the numerical efficiency of the proposed approaches in optimizing lightweight structural components composed by a solid phase and an infill one. The achieved composite layouts leverage on the potential of additive manufacturing in creating complex porous layouts to gain stiffness and redundancy of the load path. The research contributes insights regarding the optimal design of lightweight components, when the optimization of both their boundaries and the internal arrangement of the infill is dealt with. The relevance and impact of these methodologies in practical engineering applications is highlighted, especially in light of the adoption of additive manufacturing for fabrication.
La tesi tratta della progettazione ottimale di componenti strutturali alleggeriti, sottoposti a casi di carico singoli e multipli, tramite tecniche di ottimizzazione topologica multiscala. Il lavoro si concentra sulla definizione della gradazione ottimale di materiali porosi di rimepimento per componenti strutturali, in presenza di vincoli per il controllo del campo di spostamento. Vengono formulati problemi di ottimizzazione topologica per la ricerca di soluzioni di minimo volume in presenza di vincoli locali, questi ultimi trattati con un metodo di tipo Lagrangiano aumentato, ispirato ai recenti progressi nel campo dell'ottimizzazione con vincoli di sforzo. E' verificata l'adeguatezza delle prestazioni strutturali di microstrutture isotrope 2D/3D la cui geometria è caratterizzata da disposizioni a base esagonale di fori circolari/sferici a raggio variabile. Vengono impiegati metodi di omogeneizzazione numerica per ricavare le proprietà elastiche alla macroscala per diversi tipi di celle isotrope e ortotrope idonee all'alleggerimento dei componenti strutturali. Si propongono opportune leggi di interpolazione di materiale per la gestione della distribuzione di materiale pieno, poroso e vuoto. La tesi approfondisce la progettazione di strutture in materiale composito non solo considerando carichi deterministici, ma anche indagando l'impatto delle incertezze che possono influenzare l'intensità dei carichi applicati. La programmazione sequenziale convessa viene utilizzata per risolvere i problemi multi-vincolati che ne derivano, sia nel caso di carichi deterministici che probabilistici. I risultati evidenziano l'efficacia e l'efficienza degli approcci di ottimizzazione di componenti strutturali composti da materiale pieno e riempimento di tipo poroso. Le soluzioni ottenute sfruttano il potenziale della produzione additiva nella realizzazione di geometrie complesse per ottenere rigidezza e ridondanza nel percorso di trasferimento del carico. La ricerca fornisce spunti per la progettazione ottimale di componenti strutturali alleggeriti, considerando la contemporanea definizione del profilo per i bordi esterni e disposizione e gradazione del materiale poroso di riempimento. L'utilizzo delle tecniche proposte è di rilievo per le applicazioni ingegneristiche, soprattutto alla luce dell'adozione della manifattura additiva per la fabbricazione.
Multiscale topology optimization with graded micro-structures
ISMAIL, HUSSEIN
2023/2024
Abstract
The optimal design of lightweight structural components subjected to single and multiple loading conditions is explored through a multi-scale topology optimization framework. The challenges posed by the incorporation of graded infills and the enforcement of displacement constraints are addressed. The methodology relies on the formulation of multi-constrained minimum volume problems of topology optimization which are solved via an augmented Lagrangian method, as inspired by recent advancements in stress-based structural optimization. The assessment of the structural performances of 2D/3D isotropic microstructures given by hexagonal close-packed arrangements of circular/spherical holes in a continuous medium is provided. Numerical homogenization is used to derive the macroscopic elastic properties of several type of isotropic and orthotropic cells that can play as an infill for lightweight structures. The adoption of suitable interpolation laws for managing the design of two-material structures made by a full phase and a graded one, along with void, is investigated. The thesis delves into the design of composite structures not only by considering deterministic loads, but also by providing a focus on the impact of uncertainties that may affect the loading amplitude. Sequential convex programming is utilized to tackle the arising multi-constrained problems, considering both deterministic and probabilistic displacement enforcements. The findings highlight the effectiveness and the numerical efficiency of the proposed approaches in optimizing lightweight structural components composed by a solid phase and an infill one. The achieved composite layouts leverage on the potential of additive manufacturing in creating complex porous layouts to gain stiffness and redundancy of the load path. The research contributes insights regarding the optimal design of lightweight components, when the optimization of both their boundaries and the internal arrangement of the infill is dealt with. The relevance and impact of these methodologies in practical engineering applications is highlighted, especially in light of the adoption of additive manufacturing for fabrication.File | Dimensione | Formato | |
---|---|---|---|
Dissertation_Hussein.pdf
accessibile in internet per tutti
Dimensione
15.28 MB
Formato
Adobe PDF
|
15.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/222353