Rodent experiments on traumatic brain injury (TBI) induced by controlled cortical impact (CCI) are essential for studying the mechanisms underlying brain injury evolution and long-term outcomes. Magnetic resonance imaging (MRI) is increasingly used in preclinical settings to monitor in-vivo structural damage, allowing direct comparisons to human data. However, automatic segmentation of rodent brain volumes is challenging due to the scarcity of segmentation tools, particularly post-TBI, where focal contusions disrupt brain anatomy and reduce the accuracy of registration-based methods. As a result, manual skull-stripping and regions of interest (ROI) segmentation approaches are required, which are both labor-intensive and prone to errors. To reduce operator dependency and outcomes variability, this thesis introduces a novel multi-task 3D Convolutional Neural Network (CNN) architecture for skull-stripping and multi-class semantic segmentation, supported by a custom pipeline designed for training and processing 3D data of mice and rats acquired with different MRI modalities. The architecture employs attention mechanisms, multi-scale inputs, and deep supervision to generate a binary skull-stripped brain mask and a multi-class segmentation mask of four regions, including the lesion and three ventricles. The model achieved an average Dice score of >0.98 for skull-stripping in both species, >0.89 for lesion and ventricle segmentation in mice, and >0.84 for rats. To mitigate the small dataset size, we also developed a domain adaptation strategy that combines data from fully annotated healthy mice (covering ten regions, such as cortex, hippocampus, ventricles, and corpus callosum in both hemispheres) with partially annotated TBI mice (lesions and ventricles), achieving a Dice score of 0.98 for skull-stripping and an average of 0.88 across the ten classes. The lesion volumetric analysis showed a strong correlation with manual annotations (Pearson r = 0.974) and a reduced variability by 19%. Our results demonstrate that the proposed approach improves the segmentation consistency by reducing variability compared to manual methods, which could streamline TBI analysis and increase translational potential in clinical settings.
Gli esperimenti sui roditori con trauma cranico indotto da impatto corticale controllato sono fondamentali per comprendere i meccanismi del danno cerebrale e i suoi effetti a lungo termine. La risonanza magnetica è sempre più utilizzata per monitorare i danni strutturali in-vivo, facilitando il confronto con i dati clinici umani. Tuttavia, la segmentazione automatica dei volumi cerebrali nei roditori risulta complessa a causa della limitata disponibilità di strumenti specifici, soprattutto nel contesto post-trauma, dove le contusioni focali deformano l'anatomia cerebrale e compromettono l'accuratezza dei metodi di segmentazione basati sulla registrazione. Di conseguenza, la segmentazione del cranio e delle regioni di interesse richiede spesso approcci manuali, che risultano laboriosi e soggetti a errori. Per ridurre la dipendenza dall'operatore e la variabilità dei risultati, questa tesi propone una nuova architettura multi-task di rete neurale convoluzionale 3D per l'estrazione del cranio (skull-stripping) e la segmentazione semantica multiclasse, supportata da una pipeline personalizzata progettata per l'addestramento e l'elaborazione di dati 3D di topi e ratti acquisiti con diverse modalità di risonanza magnetica. L’architettura utilizza meccanismi di attenzione, input multi-scala e supervisione profonda per generare maschere binarie del cervello e maschere di segmentazione multi-classe di quattro regioni, compresa la lesione e tre ventricoli. Il modello ha ottenuto un Dice score medio di >0,98 per lo skull-stripping in entrambe le specie, >0,89 per la segmentazione della lesione e ventricoli nei topi e >0,84 per i ratti. Per mitigare la piccola dimensione del dataset, abbiamo sviluppato una strategia di adattamento del dominio che combina dati di topi sani completamente annotati (per un totale di dieci regioni) con i topi affetti da trauma cranico precedentemente annotati (quattro regioni), ottenendo un Dice score di 0,98 per lo skull-stripping e uno score medio di 0,88 per la segmentazione delle dieci classi. La quantificazione del volume delle lesioni ha mostrato una forte correlazione con le annotazioni manuali (Pearson r = 0,974) e una riduzione della variabilità del 19%. I nostri risultati dimostrano che l'approccio proposto migliora la coerenza della segmentazione riducendo la variabilità rispetto ai metodi manuali, il che potrebbe semplificare le analisi e aumentare il potenziale traslazionale in ambito clinico.
3D CNNs for Automated Lesion and Regions Segmentation in Rodents with Traumatic Brain Injury
De Salvo, Marcello
2023/2024
Abstract
Rodent experiments on traumatic brain injury (TBI) induced by controlled cortical impact (CCI) are essential for studying the mechanisms underlying brain injury evolution and long-term outcomes. Magnetic resonance imaging (MRI) is increasingly used in preclinical settings to monitor in-vivo structural damage, allowing direct comparisons to human data. However, automatic segmentation of rodent brain volumes is challenging due to the scarcity of segmentation tools, particularly post-TBI, where focal contusions disrupt brain anatomy and reduce the accuracy of registration-based methods. As a result, manual skull-stripping and regions of interest (ROI) segmentation approaches are required, which are both labor-intensive and prone to errors. To reduce operator dependency and outcomes variability, this thesis introduces a novel multi-task 3D Convolutional Neural Network (CNN) architecture for skull-stripping and multi-class semantic segmentation, supported by a custom pipeline designed for training and processing 3D data of mice and rats acquired with different MRI modalities. The architecture employs attention mechanisms, multi-scale inputs, and deep supervision to generate a binary skull-stripped brain mask and a multi-class segmentation mask of four regions, including the lesion and three ventricles. The model achieved an average Dice score of >0.98 for skull-stripping in both species, >0.89 for lesion and ventricle segmentation in mice, and >0.84 for rats. To mitigate the small dataset size, we also developed a domain adaptation strategy that combines data from fully annotated healthy mice (covering ten regions, such as cortex, hippocampus, ventricles, and corpus callosum in both hemispheres) with partially annotated TBI mice (lesions and ventricles), achieving a Dice score of 0.98 for skull-stripping and an average of 0.88 across the ten classes. The lesion volumetric analysis showed a strong correlation with manual annotations (Pearson r = 0.974) and a reduced variability by 19%. Our results demonstrate that the proposed approach improves the segmentation consistency by reducing variability compared to manual methods, which could streamline TBI analysis and increase translational potential in clinical settings.File | Dimensione | Formato | |
---|---|---|---|
2024_10_De_Salvo_Tesi.pdf
accessibile in internet per tutti a partire dal 18/09/2025
Descrizione: Testo della tesi
Dimensione
32.96 MB
Formato
Adobe PDF
|
32.96 MB | Adobe PDF | Visualizza/Apri |
2024_10_De_Salvo_Executive_Summary.pdf
accessibile in internet per tutti a partire dal 18/09/2025
Descrizione: Executive Summary
Dimensione
7.66 MB
Formato
Adobe PDF
|
7.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/227146