This study represents a full overview of Lithium-ion Batteries (LIBs), focusing on their chemistry and materials, types, electric parameters, problems, applications, and environmental effects. After comparing the primary, secondary, and special battery, the study shows that lithium-ion batteries are the leading and the most effective energy storage technology currently, because of their high energy density and power density. Different types of LIBs are examined in this study, such as LCO, LFP, NMC, NCA, LMO, and LTO, in terms of electrical properties, temperature tolerances, safety, efficiency, and lifecycle. Moreover, the study includes a cost breakdown of the LIB throughout the whole process, starting from the raw material to the recycling. In addition to covering critical topics such as thermal runaway and safety risks of the LIB, and a detailed comparison of lithium-ion batteries with lithium solid-state batteries. Furthermore, it investigates the presence of LIBs in various applications, such as electric vehicles, grid-scale energy storage, residential energy storage, and consumer electronics. The carbon footprint of various LIBs is discussed in this review, and it is measured using a lifecycle assessment, which shows that recycling helps in decreasing carbon emissions, while mining and manufacturing steps are the main source of carbon emissions. Finally, the hybridization of lithium-ion batteries with supercapacitors, was discussed and implemented. Along with its comparison with the hybridization of the solid-state batteries with supercapacitors.
Questo studio rappresenta una panoramica completa delle batterie agli ioni di litio (LIB), con un focus sulla loro chimica e sui materiali, sui tipi, sui parametri elettrici, sui problemi, sulle applicazioni e sugli effetti ambientali. Dopo un confronto tra batterie primarie, secondarie e speciali, lo studio dimostra che le batterie agli ioni di litio sono attualmente la tecnologia di accumulo energetico più avanzata ed efficace, grazie alla loro elevata densità energetica e densità di potenza. Nello studio vengono analizzati diversi tipi di LIB, come LCO, LFP, NMC, NCA, LMO e LTO, in termini di proprietà elettriche, tolleranze termiche, sicurezza, efficienza e ciclo di vita. Inoltre, viene presentata un’analisi dettagliata dei costi delle LIB lungo l’intero processo, dalla materia prima al riciclo. Lo studio affronta anche temi critici come il fenomeno del thermal runaway e i rischi per la sicurezza delle LIB, includendo un confronto approfondito tra batterie agli ioni di litio e batterie al litio allo stato solido. Viene inoltre esaminato l’impiego delle LIB in diverse applicazioni, come veicoli elettrici, accumulo di energia su scala di rete, accumulo domestico e dispositivi elettronici di consumo. L’impronta di carbonio delle varie LIB è discussa e valutata tramite un’analisi del ciclo di vita, che evidenzia come il riciclo contribuisca alla riduzione delle emissioni, mentre le fasi di estrazione e produzione rappresentano le principali fonti di gas serra. Infine, viene trattata e implementata la possibilità di ibridazione delle batterie agli ioni di litio con i supercondensatori, con un confronto rispetto all’ibridazione delle batterie allo stato solido con supercondensatori.
Lithium-ion batteries: challenges, performance, and applications
EL KHOURY MIKHAEL, NICOLE
2024/2025
Abstract
This study represents a full overview of Lithium-ion Batteries (LIBs), focusing on their chemistry and materials, types, electric parameters, problems, applications, and environmental effects. After comparing the primary, secondary, and special battery, the study shows that lithium-ion batteries are the leading and the most effective energy storage technology currently, because of their high energy density and power density. Different types of LIBs are examined in this study, such as LCO, LFP, NMC, NCA, LMO, and LTO, in terms of electrical properties, temperature tolerances, safety, efficiency, and lifecycle. Moreover, the study includes a cost breakdown of the LIB throughout the whole process, starting from the raw material to the recycling. In addition to covering critical topics such as thermal runaway and safety risks of the LIB, and a detailed comparison of lithium-ion batteries with lithium solid-state batteries. Furthermore, it investigates the presence of LIBs in various applications, such as electric vehicles, grid-scale energy storage, residential energy storage, and consumer electronics. The carbon footprint of various LIBs is discussed in this review, and it is measured using a lifecycle assessment, which shows that recycling helps in decreasing carbon emissions, while mining and manufacturing steps are the main source of carbon emissions. Finally, the hybridization of lithium-ion batteries with supercapacitors, was discussed and implemented. Along with its comparison with the hybridization of the solid-state batteries with supercapacitors.File | Dimensione | Formato | |
---|---|---|---|
2025_07_El Khoury Mikhael.pdf
accessibile in internet per tutti
Descrizione: Text of the thesis
Dimensione
2.63 MB
Formato
Adobe PDF
|
2.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239820