This thesis applies performance-based design principles to reimagine the Tour Montparnasse, Paris’s most disputed skyscraper since its completion in the 1970s. The tower’s dark brown façade has long been criticized for clashing with the urban context, while offering poor daylight conditions, excessive glare, and technical inefficiencies. These challenges established the building as a relevant case study for exploring façade retrofitting strategies. The research began with shoebox simulations to evaluate daylight performance across various façade arrangements, including horizontal, vertical, and angled configurations. Metrics such as Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE) guided the assessment. Results demonstrated that angled systems achieved superior daylight distribution and glare control. Building on this, the Wallacei evolutionary algorithm was employed to optimize façade angles, with the tower segmented into sections to balance precision with feasibility. The optimization produced three façade typologies that successfully integrated environmental performance and architectural expression. From these, one design was developed further with detailed drawings and constructability studies. Integration with Schüco systems confirmed that parametric variation could be translated into modular, industrially feasible solutions. The findings underline the potential of combining simulation-based evaluation with evolutionary optimization to retrofit high-rise buildings. Beyond improving environmental performance, the proposed design offers renewed architectural identity and enhanced social acceptance. By transforming the Montparnasse Tower into a responsive, sustainable landmark, this research demonstrates how computational workflows can bridge performance, design quality, and construction feasibility—providing a replicable framework for the sustainable renewal of urban skyscrapers.
Questa tesi applica i principi del design basato sulle prestazioni per ripensare la Tour Montparnasse, il grattacielo più discusso di Parigi sin dal suo completamento negli anni ’70. La facciata marrone scuro della torre è stata a lungo criticata per il contrasto con il contesto urbano, offrendo al contempo scarse condizioni di luce naturale, eccessivo abbagliamento e inefficienze tecniche. Queste criticità hanno reso l’edificio un caso di studio rilevante per l’esplorazione di strategie di riqualificazione delle facciate. La ricerca è iniziata con simulazioni semplificate per valutare le prestazioni luminose di diverse configurazioni di facciata, comprese quelle orizzontali, verticali e inclinate. Le metriche di riferimento, come la Spatial Daylight Autonomy (sDA) e l’Annual Sunlight Exposure (ASE), hanno guidato la valutazione. I risultati hanno dimostrato che i sistemi inclinati garantiscono la migliore distribuzione della luce diurna e il controllo dell’abbagliamento. Successivamente, è stato utilizzato l’algoritmo evolutivo Wallacei per ottimizzare gli angoli delle facciate, segmentando la torre in sezioni al fine di conciliare precisione e fattibilità. L’ottimizzazione ha prodotto tre tipologie di facciata che integrano con successo prestazioni ambientali ed espressione architettonica. Una di queste è stata sviluppata ulteriormente attraverso disegni dettagliati e studi di costruttibilità. L’integrazione con i sistemi Schüco ha confermato che la variazione parametrica può essere tradotta in soluzioni modulari e industrialmente realizzabili. I risultati sottolineano il potenziale della combinazione tra simulazioni prestazionali e ottimizzazione evolutiva per la riqualificazione dei grattacieli. Oltre a migliorare le prestazioni ambientali, il progetto proposto offre una nuova identità architettonica e una maggiore accettazione sociale. La trasformazione della Tour Montparnasse in un punto di riferimento sostenibile dimostra come i flussi di lavoro computazionali possano unire prestazioni, qualità architettonica e fattibilità costruttiva, fornendo un modello replicabile per il rinnovamento sostenibile degli edifici alti in contesti urbani contemporanei.
Daylight-driven parametric optimization of high-rise enevelopes: application to the recladding of Tour Montparnasse in Paris
Kilinc, Ecem Irem;Akin, Ozlem
2024/2025
Abstract
This thesis applies performance-based design principles to reimagine the Tour Montparnasse, Paris’s most disputed skyscraper since its completion in the 1970s. The tower’s dark brown façade has long been criticized for clashing with the urban context, while offering poor daylight conditions, excessive glare, and technical inefficiencies. These challenges established the building as a relevant case study for exploring façade retrofitting strategies. The research began with shoebox simulations to evaluate daylight performance across various façade arrangements, including horizontal, vertical, and angled configurations. Metrics such as Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE) guided the assessment. Results demonstrated that angled systems achieved superior daylight distribution and glare control. Building on this, the Wallacei evolutionary algorithm was employed to optimize façade angles, with the tower segmented into sections to balance precision with feasibility. The optimization produced three façade typologies that successfully integrated environmental performance and architectural expression. From these, one design was developed further with detailed drawings and constructability studies. Integration with Schüco systems confirmed that parametric variation could be translated into modular, industrially feasible solutions. The findings underline the potential of combining simulation-based evaluation with evolutionary optimization to retrofit high-rise buildings. Beyond improving environmental performance, the proposed design offers renewed architectural identity and enhanced social acceptance. By transforming the Montparnasse Tower into a responsive, sustainable landmark, this research demonstrates how computational workflows can bridge performance, design quality, and construction feasibility—providing a replicable framework for the sustainable renewal of urban skyscrapers.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_09_Akin_Kilinc.pdf
accessibile in internet per tutti
Descrizione: Thesis Booklet
Dimensione
27.57 MB
Formato
Adobe PDF
|
27.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243637