The integration of multiple oscillators on the same die has become essential in modern RF systems, enabled by the continuous scaling of CMOS technology. While this advancement offers higher density and compactness, it also exacerbates parasitic interactions between circuits. Among these, pulling is particularly critical, as the unintended coupling between oscillators or PLLs degrades spectral purity by introducing spurious tones and altering the output phase. Addressing this issue is essential for the design of reliable and efficient wireless transceivers. This thesis investigates pulling with a specific focus on its origin in magnetic coupling between inductors. Building on existing theoretical models, it is shown through circuit analysis that magnetic coupling gives rise to pulling, with strength proportional to the coupling coefficient. To account for the non-idealities of real inductors, the Norton Method is introduced as a predictive tool. This approach allows rapid estimation of pulling strength directly from inductor structures, implicitly accounting for complex coupling paths without requiring detailed electromagnetic analysis. Several inductor topologies reported in the literature are systematically compared using this methodology. The four-lobed inductor proves effective, and building upon it, a novel Rose Inductor is proposed. This structure offers strong resilience to magnetic coupling and straightforward integration of a capacitor bank. To validate its effectiveness, a Class-B digitally controlled oscillator (DCO) employing the proposed inductor was designed to operate at two central frequencies, 8.5 GHz and 10.8 GHz, with a tuning range of 3.6 GHz. Post-layout simulations show that the Rose Inductor reduces spurious tones due to pulling around the carrier by 25.34 dB. The oscillator achieves phase noise as low as –110.149 dBc/Hz at 1MHz offset and a figure of merit (FoM) as high as 183.1 dB at 100 kHz offset and 185.3 dB at 10MHz offset.
L’integrazione di più oscillatori sullo stesso chip è resa possibile dal continuo scaling della tecnologia CMOS ed è ormai essenziale nei moderni sistemi RF. Se da un lato ciò consente maggiore densità e compattezza, dall’altro accentua le interazioni parassite tra circuiti. Tra queste, il fenomeno del pulling è particolarmente critico, poiché l’accoppiamento indesiderato tra oscillatori o PLL degrada la purezza spettrale introducendo toni spurii e alterando la fase del segnale. Questa tesi analizza il pulling con particolare attenzione alla sua origine nell’accoppiamento magnetico tra induttori. Partendo dai modelli teorici esistenti, viene dimostrato tramite analisi circuitale che l’accoppiamento magnetico genera pulling con intensità proporzionale al coefficiente di accoppiamento. Per considerare le non idealità degli induttori reali, è stato introdotto il Metodo di Norton come strumento predittivo rapido, capace di stimare la forza del pulling a partire dalla struttura degli induttori e di includere implicitamente percorsi di accoppiamento complessi senza ricorrere ad analisi elettromagnetiche complete. Diversi induttori presenti in letteratura sono stati analizzati e confrontati con questa metodologia. L’induttore a quattro lobi si è rivelato efficace e, a partire da esso, è stata proposta una nuova topologia denominata Rose Inductor, che abbina resistenza all’accoppiamento magnetico e integrazione semplificata di un banco di capacità. Un oscillatore Digitally Controlled (DCO) di classe B basato su tale induttore è stato progettato per operare a due frequenze centrali, 8.5 GHz e 10.8 GHz, con un range di tuning di 3.6 GHz. Le simulazioni post-layout mostrano che il Rose Inductor riduce le spurie da pulling attorno alla portante di 25.34 dB. L’oscillatore raggiunge inoltre un rumore di fase minimo di –110.149 dBc/Hz a 1MHz di offset e una figure of merit (FoM) fino a 183.1 dB a 100 kHz e 185.3 dB a 10MHz di offset.
A pulling-resilient voltage-controlled oscillator implemented with a Rose Inductor in 28-nm CMOS
Villari, Simone
2024/2025
Abstract
The integration of multiple oscillators on the same die has become essential in modern RF systems, enabled by the continuous scaling of CMOS technology. While this advancement offers higher density and compactness, it also exacerbates parasitic interactions between circuits. Among these, pulling is particularly critical, as the unintended coupling between oscillators or PLLs degrades spectral purity by introducing spurious tones and altering the output phase. Addressing this issue is essential for the design of reliable and efficient wireless transceivers. This thesis investigates pulling with a specific focus on its origin in magnetic coupling between inductors. Building on existing theoretical models, it is shown through circuit analysis that magnetic coupling gives rise to pulling, with strength proportional to the coupling coefficient. To account for the non-idealities of real inductors, the Norton Method is introduced as a predictive tool. This approach allows rapid estimation of pulling strength directly from inductor structures, implicitly accounting for complex coupling paths without requiring detailed electromagnetic analysis. Several inductor topologies reported in the literature are systematically compared using this methodology. The four-lobed inductor proves effective, and building upon it, a novel Rose Inductor is proposed. This structure offers strong resilience to magnetic coupling and straightforward integration of a capacitor bank. To validate its effectiveness, a Class-B digitally controlled oscillator (DCO) employing the proposed inductor was designed to operate at two central frequencies, 8.5 GHz and 10.8 GHz, with a tuning range of 3.6 GHz. Post-layout simulations show that the Rose Inductor reduces spurious tones due to pulling around the carrier by 25.34 dB. The oscillator achieves phase noise as low as –110.149 dBc/Hz at 1MHz offset and a figure of merit (FoM) as high as 183.1 dB at 100 kHz offset and 185.3 dB at 10MHz offset.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_10_Villari_Tesi.pdf
non accessibile
Dimensione
10.84 MB
Formato
Adobe PDF
|
10.84 MB | Adobe PDF | Visualizza/Apri |
|
2025_10_Villari_Executive_Summary.pdf
non accessibile
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/243810