This master thesis is developed in collaboration with Flashka.ai, a platform that supports student in their studies by automating the process of creating flashcards and quizzes. Despite its effectiveness, the system currently offers a solely individual experience. The project aims to introduce a new collaborative dimension to the platform. Research conducted through digital ethnography, literature reviews, and interviews with university students reveals that group study is an highly effective method for consolidating knowledge and identifying gaps. However, this approach is often limited by organizational challenges, lack of student compatibility, and emotional pressure. These insights led to AI-powered study groups, a feature that enables users to share flashcard decks within study groups and compare them asynchronously with artificial intelligence support. The system analyzes the decks, detects differences, and guides users through an active, targeted review; thus combining the cognitive benefits of peer comparison with the flexibility and effectiveness of individual AI-powered study. Conducted tests show significant interest from Flashka users and confirm the feature’s strong potential. This thesis offers two contributions: an highly strategic design direction for Flashka’s collaborative evolution and some practical guidelines for designing collaborative learning experiences supported by artificial intelligence, valuable for the entire EdTech sector.
Questa tesi di laurea magistrale è stata sviluppata in collaborazione con Flashka.ai, una piattaforma che supporta gli studenti nello studio automatizzando il processo di creazione di flashcard e quiz. Nonostante la sua efficacia, il sistema offre attualmente un’esperienza esclusivamente individuale. Il progetto mira a introdurre una nuova dimensione collaborativa all’interno della piattaforma. La ricerca condotta attraverso etnografia digitale, revisione della letteratura e interviste con studenti universitari rivela come lo studio di gruppo sia un metodo altamente efficace per consolidare le conoscenze e identificare le lacune. Tuttavia, questo approccio è spesso limitato da difficoltà organizzative, incompatibilità tra gli studenti e pressione emotiva. Questi insights hanno guidato lo sviluppo di AI-powered study group, una funzione che consente agli utenti di condividere mazzi di flashcard all’interno dei gruppi di studio e di confrontarli in modo asincrono con il supporto dell’intelligenza artificiale. Il sistema analizza i mazzi, rileva le differenze e guida gli utenti attraverso una revisione attiva e mirata, combinando così i vantaggi cognitivi del confronto tra pari con la flessibilità e l’efficacia dello studio individuale basato sull’intelligenza artificiale. I test condotti mostrano un significativo interesse da parte degli utenti di Flashka e confermano il forte potenziale della funzione. Questa tesi offre due contributi: una direzione di progettazione altamente strategica per l’evoluzione collaborativa di Flashka e alcune linee guida pratiche per la progettazione di esperienze di apprendimento collaborativo supportate dall’intelligenza artificiale, preziose per l’intero settore EdTech.
AI-powered study groups: introducing a new effective collaborative experience in Flashka.ai
Lunardon, Paolo
2024/2025
Abstract
This master thesis is developed in collaboration with Flashka.ai, a platform that supports student in their studies by automating the process of creating flashcards and quizzes. Despite its effectiveness, the system currently offers a solely individual experience. The project aims to introduce a new collaborative dimension to the platform. Research conducted through digital ethnography, literature reviews, and interviews with university students reveals that group study is an highly effective method for consolidating knowledge and identifying gaps. However, this approach is often limited by organizational challenges, lack of student compatibility, and emotional pressure. These insights led to AI-powered study groups, a feature that enables users to share flashcard decks within study groups and compare them asynchronously with artificial intelligence support. The system analyzes the decks, detects differences, and guides users through an active, targeted review; thus combining the cognitive benefits of peer comparison with the flexibility and effectiveness of individual AI-powered study. Conducted tests show significant interest from Flashka users and confirm the feature’s strong potential. This thesis offers two contributions: an highly strategic design direction for Flashka’s collaborative evolution and some practical guidelines for designing collaborative learning experiences supported by artificial intelligence, valuable for the entire EdTech sector.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_11_Lunardon.pdf
accessibile in internet per tutti
Dimensione
17.99 MB
Formato
Adobe PDF
|
17.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247013