During the last 40 years, the mass of orbiting artificial objects increased quite steadily at the rate of about 145 metric tons annually, leading to a total of approximately 7000 metric tons. Now, most of the cross-sectional area and mass (97% in Low Earth Orbit (LEO)) are concentrated in about 4500 intact objects, i.e. abandoned spacecraft and rocket bodies, plus a further 1000 operational spacecraft. According to the most recent NASA results, the active yearly removal of approximately 5 large abandoned intact objects would be sufficient to stabilize the debris growth in LEO, together with the worldwide application of mitigation measures. However, besides legal and political issues, remediation measures are strongly hampered by high costs involved. In fact, the adoption of active debris removal freaks the space community out due to a so big expense, which does not provide any kind of direct earning and no possibility to be amortized. Recent simulations and cost analysis have shown that the active removal of only large historical abandoned objects will provide a reduction of longterm costs with respect to a no-remediation scenario. Several removal solutions have been proposed, such as different tether approaches, drag augmentation systems and the use of electrical engines or chemical rockets. The latter represent the preferred way for the controlled reentry of the removed target and, in the perspective of cost reduction, hybrid rocket technology is considered a valuable option, due to significant lower costs if compared with the actually used bi-propellant liquid systems. The possibility to use non-toxic propellants, besides their lower prices, reduces the complexity of handling, storability and load operations, decreasing the connected costs and avoiding the need of a special staff. Hybrid rockets can also be implemented for Post Mission Disposal (PMD) missions, by designing small, compact and cheap on-board propulsion systems for new satellites. Very important is the propellant selection: hybrid propulsion is characterized by fuel and oxidizer in different state of matter. Typically, polymeric or paraffin materials are used as solid fuel, burned with non-toxic liquid or gaseous oxidizers. In case of long mission duration or ground storage, the selected propellants must keep their physical properties to guarantee the engine operations when required. Hydroxyl-Terminated Polybutadiene (HTPB) R45 is one of the most used materials in the space propulsion field, in particular as solid fuel in hybrid propulsion. It is characterized by high mechanical properties, resulting very suitable for combustion applications, despite its not great ballistics performance. In this respect, a simulated aging study was carried out, by means of thermal treatments defined considering the Arrhenius equation and the relative empirical van’t Hoff rule. Storage modulus, Loss modulus and the dumping coefficient tan were measured at aging checkpoints by means of Dynamic Mechanical Analyzer (DMA). The HTPB R45 supplied by AVIO revealed a strong longevity, with quite low mechanical properties reduction over the simulated time. Despite several advantages, hybrid rocket technology is still characterized by a relatively low Technology Readiness Level (TRL), missing of an in-space demonstrative mission, as well as poor combustion efficiency, O/F shifting and low fuel regression rates (rf). An internal ballistics combustion analysis was performed at laboratory scale level. A swirling oxidizer flow was used to improve the convective heat exchange between the flame and the regressing surface together with a HTPB-based fuel formulation loaded with 10% of an aluminum activated micron-sized powder. Besides the regression rate enhancements provided by their separately application, the rf increase achieved by the techniques combination results similar to that achieved with metallized HTPB in standard injection. However, the combined approach revealed the possibility of limiting the performance shift of burning hybrid systems by means of swirl injection, which seems able to limit the convection heat transfer reduction during the combustion. Hybrid propulsion could represent a key choice for all space debris applications to be performed in the next future. A design tool, based on quasi-one-dimensional Euler equations combined with chemical equilibrium, for hybrid rocket internal ballistics analysis and preliminary sizing was implemented following the approach suggested by Funami and Shimada. The regression rate is estimated for the couple HTPB + H2O2 by means of Marxman’s model. H2O2 catalytic decomposition can be used both for the engine ignition and Reaction Control System (RCS), spilling from the same tank (90% concentration H2O2). The preliminary design of a HPM is performed for two targets: Cosmos-3M 2nd stage (1.4 t) and Envisat (7.8 t), both at the same altitude. The first represents a very good candidate for demonstrative missions and technology validation, whereas the second is the target with the highest priority level, since in case of accidental collision a large number of new debris might be generated. A velocity increment of 220 m/s is required for a controlled reentry. Each object is removed by a De-orbiting Kit (DeoKit) powered by a Hybrid Propulsion Module (HPM) (also able to perform a mid-range rendezvous of 20 m/s of velocity increment) and equipped with a Active Debris Removal (ADR) platform and two RCS systems, one for close-proximity operations and one for attitude control. A Cosmos-3M can be de-orbited using a single boost maneuver by an HPM of 258 kg (DeoKit 566.8 kg), with a length of 2.14 m and a width 90 cm. Vega can load 2 DeoKits, while Soyuz up to 6 allowing for multi-removal scenario. For Envisat a two-burns disposal is preferred to reduce the HPM mass, size and combustion time. The HPM results of 1260 kg (DeoKit 1771 kg), with a length of 3.76 m and a width 1.55 m. The latter can be put on orbit only by a heavy launcher such as Soyuz, which can load up to 2 DeoKits for the removal of Envisat-like objects.

Durante gli ultimi 40 anni, la massa degli oggetti artificiali rimasti in orbita è aumentata con un rateo di 145 tonnellate l'anno, arrivando ad un totale di 7000 tonnellate. Attualmente si contano 4500 oggetti intatti, ossia veicoli spaziali e stadi superiori di endoreattori abbandonati, a cui aggiungere circa 1000 sistemi funzionanti (il 97% si trova in Low Earth Orbit (LEO)). Recenti studi fatti dalla NASA sostengono che la rimozione attiva di 5 grandi oggetti intatti all'anno, unita all'applicazione di misure di mitigazione, potrebbe essere sufficiente a stabilizzare la crescita di detriti nelle orbite LEO. Tuttavia oltre a impedimenti legali e politici, all'applicazione di misure di rimozione si contrappongono gli elevati costi coinvolti. Infatti, questa tipologia di missioni spaventa la comunità spaziale, poiché tale spesa sarebbe a fondo perduto, non portando alcun guadagno diretto nel breve periodo oltre l'impossibilità di un suo ammortamento. Recenti simulazioni e analisi di costo hanno mostrato che la rimozione attiva di un numero limitato di oggetti, quelli più ad alto rischio, porterebbe a una riduzione dei costi sul lungo periodo rispetto a uno scenario senza missioni di rimozione. Diverse soluzioni sono state proposte, quali l'utilizzo di tether, di sistemi di incremento dell'area soggetta a resistenza atmosferica e radiazione solare, uso di propulsori elettrici o endoreattori chimici. Quest'ultimi rappresentano la soluzione più adatta per effettuare il rientro controllato dell'oggetto da rimuovere e, nell'ottica di riduzione dei costi, la propulsione ibrida si presenta come una valida opzione rispetto agli attualmente utilizzati propulsori a bi-propellente liquido. Inoltre, l'ibrido permette l'utilizzo di propellenti non tossici, riducendo quindi anche i costi di gestione connessi e la necessità di personale specializzato. Motori a razzo ibridi possono anche essere utilizzati per operazioni di Post Mission Disposal (PMD), progettando sistemi piccoli e compatti da imbarcare sui nuovi satelliti. Di fondamentale importanza è la selezione dei propellenti: in un endoreattore ibrido il combustibile e l'ossidante si trovano in diverso stato di aggregazione. Tipicamente, materiali polimerici e paraffinici sono impiegati come combustibili solidi, fatti reagire con ossidanti allo stato liquido o gassoso. In caso di missioni di lunga durata o conservazione in stabilimento, i propellenti selezionati devono poter mantenere le loro proprietà fisiche al fine di garantire le prestazioni necessarie quando richiesto dalla missione. Uno dei materiali più utilizzati nel campo della propulsione spaziale, in particolare nell'ibrido, è il polimero HTPB R45 (hydroxyl-terminated polybutadiene). Dotato di elevate prestazioni meccaniche, questo materiale risulta molto adatto per applicazioni propulsive nonostante le sue basse prestazioni balistiche. A tal proposito è stato condotto uno studio di invecchiamento simulato per mezzo di trattamento termico, definito considerando l'equazione di Arrhenius e la relazione semi-empirica di van't Hoff. In corrispondenza di diversi livelli di invecchiamento, le proprietà meccaniche del materiale sono state misurate tramite Dynamic Mechanical Analizer (DMA). I lotti di HTPB R45 forniti da AVIO hanno mostrato una notevole longevità, caratterizzata da una limitata riduzione delle prestazioni meccaniche nell'arco dell'invecchiamento simulato. La tecnologia ibrida, nonostante i molti vantaggi che fornisce, è caratterizzata da un basso Technology Readiness Level (TRL), siccome non è stata ancora testata in ambiente spaziale, inoltre presenta bassa efficienza di combustione, variazione del rapporto di miscela e bassa velocità di regressione (rf) del grano solido. Un'analisi balistica della combustione è stata effettuata su impianti di piccola scala. Due tecniche per l'incremento della rf sono state applicate: un flusso di ossidante swirlato per incrementare lo scambio termico convettivo fra la fiamma e la superficie del grano solido e un combustibile caricato con 10% di polvere micrometrica di alluminino attivato. Nonostante gli incrementi di rf ottenuti utilizzando o solo ossidante swirl o solo HTPB alluminizzato, la velocità di regressione misurata combinando le due tecniche si è rivelata molto simile ai valori ottenuti dalla combustione di HTPB alluminizzato sotto flusso di ossidante standard. Tuttavia, l'approccio combinato sembra mostrare l'eventuale possibilità di ridurre la variazione delle performance nell'ibrido attraverso l'uso di ossidante swirlato. Quest'ultimo sembrerebbe in grado di limitare la riduzione dello scambio termico convettivo che generalmente avviene durante la combustione. La propulsione ibrida potrebbe rappresentare una scelta chiave per le tipologie di missioni legate alla rimozione e mitigazione dei detriti spaziali. Con lo scopo di progettare, a livello preliminare, un propulsore ibrido per missioni di rimozione attiva, un codice numerico per il dimensionamento, basato sulle equazioni di Eulero nel caso quasi-mono-dimensionale combinate con il calcolo dell'equilibrio chimico, è stato implementato seguendo l'approccio suggerito da Funami e Shimada. La velocità di regressione è stata stimata per la coppia HTPB+H2O2 per mezzo del modello di Marxman. La decomposizione catalitica del perossido di idrogeno (concentrazione al 90%) può essere sfruttata sia per l'ignizione del motore che per il Reaction Control System (RCS), il quale spillerebbe anch'esso dal serbatoio principale. Il dimensionamento preliminare di un Hybrid Propulsion Module (HPM) è stato effettuato per due obbiettivi: il secondo stadio di un Cosmos-3M (1.4 t) e Envisat (7.8 t), entrambi localizzati alla circa alla stessa quota orbitale. Il primo rappresenta un candidato ideale per missioni dimostrative e di validazione delle tecnologie impiegate, mentre il secondo è l'oggetto a più alta priorità di rimozione, siccome in caso di collisione accidentale il numero di nuovi detriti generati sarebbe estremamente elevato. Per effettuare un rientro controllato è necessario un incremento di velocità di 220 m/s. Ogni oggetto si assume rimosso da un De-orbiting Kit (DeoKit) spinto da un HPM (in grado di effettuare anche una fase di rendezvous per circa 20 m/s di incremento di velocità) ed equipaggiato con i sistemi di avionica e di rimozione, nonché due RCS, uno per le operazioni di prossimità con il target e l'altro per il controllo d'assetto durante il de-orbiting. Un Cosmos-3M può essere rimosso da una manovra che prevede un singolo sparo motore per mezzo di un HPM di 258 kg (DeoKit 566.8 kg), lungo 2.14 m e largo circa 90 cm. Il lanciatore Vega potrebbe trasportare fino a 2 DeoKit, mentre la Soyuz fino a 6, permettendo missioni di rimozione multipla. Per Envisat una manovra a due spari motore è preferibile, al fine di ridurre le spinte in gioco e le dimensioni del propulsore, il quale risulta di 1260 kg (DeoKit 1770 kg), con una lunghezza di 3.76 m e una larghezza di 1.55 m. Quest'ultimo può essere messo in orbita solamente da un lanciatore spaziale pesante, quale il vettore russo Soyuz, che in questo caso potrebbe caricare fino a 2 DeoKit.

Hybrid rocket propulsion for active removal of large abandoned objects

TADINI, PIETRO

Abstract

During the last 40 years, the mass of orbiting artificial objects increased quite steadily at the rate of about 145 metric tons annually, leading to a total of approximately 7000 metric tons. Now, most of the cross-sectional area and mass (97% in Low Earth Orbit (LEO)) are concentrated in about 4500 intact objects, i.e. abandoned spacecraft and rocket bodies, plus a further 1000 operational spacecraft. According to the most recent NASA results, the active yearly removal of approximately 5 large abandoned intact objects would be sufficient to stabilize the debris growth in LEO, together with the worldwide application of mitigation measures. However, besides legal and political issues, remediation measures are strongly hampered by high costs involved. In fact, the adoption of active debris removal freaks the space community out due to a so big expense, which does not provide any kind of direct earning and no possibility to be amortized. Recent simulations and cost analysis have shown that the active removal of only large historical abandoned objects will provide a reduction of longterm costs with respect to a no-remediation scenario. Several removal solutions have been proposed, such as different tether approaches, drag augmentation systems and the use of electrical engines or chemical rockets. The latter represent the preferred way for the controlled reentry of the removed target and, in the perspective of cost reduction, hybrid rocket technology is considered a valuable option, due to significant lower costs if compared with the actually used bi-propellant liquid systems. The possibility to use non-toxic propellants, besides their lower prices, reduces the complexity of handling, storability and load operations, decreasing the connected costs and avoiding the need of a special staff. Hybrid rockets can also be implemented for Post Mission Disposal (PMD) missions, by designing small, compact and cheap on-board propulsion systems for new satellites. Very important is the propellant selection: hybrid propulsion is characterized by fuel and oxidizer in different state of matter. Typically, polymeric or paraffin materials are used as solid fuel, burned with non-toxic liquid or gaseous oxidizers. In case of long mission duration or ground storage, the selected propellants must keep their physical properties to guarantee the engine operations when required. Hydroxyl-Terminated Polybutadiene (HTPB) R45 is one of the most used materials in the space propulsion field, in particular as solid fuel in hybrid propulsion. It is characterized by high mechanical properties, resulting very suitable for combustion applications, despite its not great ballistics performance. In this respect, a simulated aging study was carried out, by means of thermal treatments defined considering the Arrhenius equation and the relative empirical van’t Hoff rule. Storage modulus, Loss modulus and the dumping coefficient tan were measured at aging checkpoints by means of Dynamic Mechanical Analyzer (DMA). The HTPB R45 supplied by AVIO revealed a strong longevity, with quite low mechanical properties reduction over the simulated time. Despite several advantages, hybrid rocket technology is still characterized by a relatively low Technology Readiness Level (TRL), missing of an in-space demonstrative mission, as well as poor combustion efficiency, O/F shifting and low fuel regression rates (rf). An internal ballistics combustion analysis was performed at laboratory scale level. A swirling oxidizer flow was used to improve the convective heat exchange between the flame and the regressing surface together with a HTPB-based fuel formulation loaded with 10% of an aluminum activated micron-sized powder. Besides the regression rate enhancements provided by their separately application, the rf increase achieved by the techniques combination results similar to that achieved with metallized HTPB in standard injection. However, the combined approach revealed the possibility of limiting the performance shift of burning hybrid systems by means of swirl injection, which seems able to limit the convection heat transfer reduction during the combustion. Hybrid propulsion could represent a key choice for all space debris applications to be performed in the next future. A design tool, based on quasi-one-dimensional Euler equations combined with chemical equilibrium, for hybrid rocket internal ballistics analysis and preliminary sizing was implemented following the approach suggested by Funami and Shimada. The regression rate is estimated for the couple HTPB + H2O2 by means of Marxman’s model. H2O2 catalytic decomposition can be used both for the engine ignition and Reaction Control System (RCS), spilling from the same tank (90% concentration H2O2). The preliminary design of a HPM is performed for two targets: Cosmos-3M 2nd stage (1.4 t) and Envisat (7.8 t), both at the same altitude. The first represents a very good candidate for demonstrative missions and technology validation, whereas the second is the target with the highest priority level, since in case of accidental collision a large number of new debris might be generated. A velocity increment of 220 m/s is required for a controlled reentry. Each object is removed by a De-orbiting Kit (DeoKit) powered by a Hybrid Propulsion Module (HPM) (also able to perform a mid-range rendezvous of 20 m/s of velocity increment) and equipped with a Active Debris Removal (ADR) platform and two RCS systems, one for close-proximity operations and one for attitude control. A Cosmos-3M can be de-orbited using a single boost maneuver by an HPM of 258 kg (DeoKit 566.8 kg), with a length of 2.14 m and a width 90 cm. Vega can load 2 DeoKits, while Soyuz up to 6 allowing for multi-removal scenario. For Envisat a two-burns disposal is preferred to reduce the HPM mass, size and combustion time. The HPM results of 1260 kg (DeoKit 1771 kg), with a length of 3.76 m and a width 1.55 m. The latter can be put on orbit only by a heavy launcher such as Soyuz, which can load up to 2 DeoKits for the removal of Envisat-like objects.
VIGEVANO, LUIGI
18-set-2014
Durante gli ultimi 40 anni, la massa degli oggetti artificiali rimasti in orbita è aumentata con un rateo di 145 tonnellate l'anno, arrivando ad un totale di 7000 tonnellate. Attualmente si contano 4500 oggetti intatti, ossia veicoli spaziali e stadi superiori di endoreattori abbandonati, a cui aggiungere circa 1000 sistemi funzionanti (il 97% si trova in Low Earth Orbit (LEO)). Recenti studi fatti dalla NASA sostengono che la rimozione attiva di 5 grandi oggetti intatti all'anno, unita all'applicazione di misure di mitigazione, potrebbe essere sufficiente a stabilizzare la crescita di detriti nelle orbite LEO. Tuttavia oltre a impedimenti legali e politici, all'applicazione di misure di rimozione si contrappongono gli elevati costi coinvolti. Infatti, questa tipologia di missioni spaventa la comunità spaziale, poiché tale spesa sarebbe a fondo perduto, non portando alcun guadagno diretto nel breve periodo oltre l'impossibilità di un suo ammortamento. Recenti simulazioni e analisi di costo hanno mostrato che la rimozione attiva di un numero limitato di oggetti, quelli più ad alto rischio, porterebbe a una riduzione dei costi sul lungo periodo rispetto a uno scenario senza missioni di rimozione. Diverse soluzioni sono state proposte, quali l'utilizzo di tether, di sistemi di incremento dell'area soggetta a resistenza atmosferica e radiazione solare, uso di propulsori elettrici o endoreattori chimici. Quest'ultimi rappresentano la soluzione più adatta per effettuare il rientro controllato dell'oggetto da rimuovere e, nell'ottica di riduzione dei costi, la propulsione ibrida si presenta come una valida opzione rispetto agli attualmente utilizzati propulsori a bi-propellente liquido. Inoltre, l'ibrido permette l'utilizzo di propellenti non tossici, riducendo quindi anche i costi di gestione connessi e la necessità di personale specializzato. Motori a razzo ibridi possono anche essere utilizzati per operazioni di Post Mission Disposal (PMD), progettando sistemi piccoli e compatti da imbarcare sui nuovi satelliti. Di fondamentale importanza è la selezione dei propellenti: in un endoreattore ibrido il combustibile e l'ossidante si trovano in diverso stato di aggregazione. Tipicamente, materiali polimerici e paraffinici sono impiegati come combustibili solidi, fatti reagire con ossidanti allo stato liquido o gassoso. In caso di missioni di lunga durata o conservazione in stabilimento, i propellenti selezionati devono poter mantenere le loro proprietà fisiche al fine di garantire le prestazioni necessarie quando richiesto dalla missione. Uno dei materiali più utilizzati nel campo della propulsione spaziale, in particolare nell'ibrido, è il polimero HTPB R45 (hydroxyl-terminated polybutadiene). Dotato di elevate prestazioni meccaniche, questo materiale risulta molto adatto per applicazioni propulsive nonostante le sue basse prestazioni balistiche. A tal proposito è stato condotto uno studio di invecchiamento simulato per mezzo di trattamento termico, definito considerando l'equazione di Arrhenius e la relazione semi-empirica di van't Hoff. In corrispondenza di diversi livelli di invecchiamento, le proprietà meccaniche del materiale sono state misurate tramite Dynamic Mechanical Analizer (DMA). I lotti di HTPB R45 forniti da AVIO hanno mostrato una notevole longevità, caratterizzata da una limitata riduzione delle prestazioni meccaniche nell'arco dell'invecchiamento simulato. La tecnologia ibrida, nonostante i molti vantaggi che fornisce, è caratterizzata da un basso Technology Readiness Level (TRL), siccome non è stata ancora testata in ambiente spaziale, inoltre presenta bassa efficienza di combustione, variazione del rapporto di miscela e bassa velocità di regressione (rf) del grano solido. Un'analisi balistica della combustione è stata effettuata su impianti di piccola scala. Due tecniche per l'incremento della rf sono state applicate: un flusso di ossidante swirlato per incrementare lo scambio termico convettivo fra la fiamma e la superficie del grano solido e un combustibile caricato con 10% di polvere micrometrica di alluminino attivato. Nonostante gli incrementi di rf ottenuti utilizzando o solo ossidante swirl o solo HTPB alluminizzato, la velocità di regressione misurata combinando le due tecniche si è rivelata molto simile ai valori ottenuti dalla combustione di HTPB alluminizzato sotto flusso di ossidante standard. Tuttavia, l'approccio combinato sembra mostrare l'eventuale possibilità di ridurre la variazione delle performance nell'ibrido attraverso l'uso di ossidante swirlato. Quest'ultimo sembrerebbe in grado di limitare la riduzione dello scambio termico convettivo che generalmente avviene durante la combustione. La propulsione ibrida potrebbe rappresentare una scelta chiave per le tipologie di missioni legate alla rimozione e mitigazione dei detriti spaziali. Con lo scopo di progettare, a livello preliminare, un propulsore ibrido per missioni di rimozione attiva, un codice numerico per il dimensionamento, basato sulle equazioni di Eulero nel caso quasi-mono-dimensionale combinate con il calcolo dell'equilibrio chimico, è stato implementato seguendo l'approccio suggerito da Funami e Shimada. La velocità di regressione è stata stimata per la coppia HTPB+H2O2 per mezzo del modello di Marxman. La decomposizione catalitica del perossido di idrogeno (concentrazione al 90%) può essere sfruttata sia per l'ignizione del motore che per il Reaction Control System (RCS), il quale spillerebbe anch'esso dal serbatoio principale. Il dimensionamento preliminare di un Hybrid Propulsion Module (HPM) è stato effettuato per due obbiettivi: il secondo stadio di un Cosmos-3M (1.4 t) e Envisat (7.8 t), entrambi localizzati alla circa alla stessa quota orbitale. Il primo rappresenta un candidato ideale per missioni dimostrative e di validazione delle tecnologie impiegate, mentre il secondo è l'oggetto a più alta priorità di rimozione, siccome in caso di collisione accidentale il numero di nuovi detriti generati sarebbe estremamente elevato. Per effettuare un rientro controllato è necessario un incremento di velocità di 220 m/s. Ogni oggetto si assume rimosso da un De-orbiting Kit (DeoKit) spinto da un HPM (in grado di effettuare anche una fase di rendezvous per circa 20 m/s di incremento di velocità) ed equipaggiato con i sistemi di avionica e di rimozione, nonché due RCS, uno per le operazioni di prossimità con il target e l'altro per il controllo d'assetto durante il de-orbiting. Un Cosmos-3M può essere rimosso da una manovra che prevede un singolo sparo motore per mezzo di un HPM di 258 kg (DeoKit 566.8 kg), lungo 2.14 m e largo circa 90 cm. Il lanciatore Vega potrebbe trasportare fino a 2 DeoKit, mentre la Soyuz fino a 6, permettendo missioni di rimozione multipla. Per Envisat una manovra a due spari motore è preferibile, al fine di ridurre le spinte in gioco e le dimensioni del propulsore, il quale risulta di 1260 kg (DeoKit 1770 kg), con una lunghezza di 3.76 m e una larghezza di 1.55 m. Quest'ultimo può essere messo in orbita solamente da un lanciatore spaziale pesante, quale il vettore russo Soyuz, che in questo caso potrebbe caricare fino a 2 DeoKit.
Tesi di dottorato
File allegati
File Dimensione Formato  
TESI_PHD_1sept14.pdf

accessibile in internet per tutti

Descrizione: Testo della Tesi
Dimensione 14.41 MB
Formato Adobe PDF
14.41 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/97966