Reduction of aerodynamic drag is a crucial aspect in cycling. Currently, to optimize aerodynamic, athletes rely on wind tunnel tests, CFD simulations, or velodrome experiments, which still require validation through wind tunnel measurements. This implies that each new test necessitates significant investments in terms of financial resources and time, a vital aspect in a cyclist's professional life. This paper introduces a novel workflow that aims to streamline and accelerate the aerodynamic analysis process for cycling. The proposed workflow focuses on utilizing a full-sized mannequin and integrates CFD simulations, solved with 3D RANS and k-omega SST model, wind tunnel validation, 3D scanning, and rigging animation techniques in Blender. The animation technique involves creating a virtual skeleton that allows the scanned model to be posed in any desired position, eliminating the need for physical adjustments and repetitive wind tunnel testing. To showcase the time-saving advantages of this approach, a steady CFD analysis is conducted to compare six different configurations obtained using the rigged model, in terms of drag areas, velocity streamlines, and pressure coefficient distribution. The obtained data trends closely align with previous similar studies in the literature. The entire process, from the initial 3D scanning of the mannequin to achieving the desired positioning, takes approximately three hours, significantly reducing the time required compared to traditional methods. Additionally, future adjustments to the position or equipment can be easily made using the virtual rigging model. By integrating virtual techniques with CFD simulations and wind tunnel validation, the proposed workflow enables rapid evaluation of aerodynamic performance in a more efficient and cost-effective manner.

La riduzione della resistenza aerodinamica è un aspetto cruciale nel ciclismo. Attualmente, per ottimizzare l'aerodinamica, gli atleti si affidano a test in galleria del vento, simulazioni CFD o esperimenti in velodromo, che comunque richiedono la validazione tramite misurazioni in galleria del vento. Ogni nuovo test richiede quindi significativi investimenti in termini di risorse finanziarie e di tempo, aspetto vitale nella vita professionale di un ciclista. Questa ricerca introduce un nuovo metodo di lavoro che mira a semplificare ed accelerare il processo di analisi aerodinamica nel ciclismo. Il flusso di lavoro è focalizzato sull'utilizzo di un manichino a grandezza naturale ed integra simulazioni CFD, validazione in galleria del vento, scansione 3D e tecniche di animazione “rigging”, realizzate con Blender. Tali tecniche prevedono la creazione di uno scheletro virtuale che consente di posizionare il modello scansionato in qualsiasi posizione desiderata, eliminando la necessità di cambiamenti e test fisici. Per dimostrare i vantaggi in termini di risparmio di tempo di questo approccio, sei diverse configurazioni ottenute utilizzando il modello con animazione sono confrontate con analisi CFD in termini di resistenza aerodinamica, linee di velocità e distribuzione dei coefficienti di pressione. L'intero processo dalla scansione iniziale del manichino al raggiungimento della posizione desiderata impiega approssimativamente tre ore, riducendo significativamente il tempo richiesto rispetto ai metodi tradizionali. Inoltre, è possibile apportare facilmente modifiche future alla posizione o all'equipaggiamento utilizzando il modello virtuale. Integrando tecniche virtuali con simulazioni CFD e validazione in galleria del vento viene consentita una valutazione rapida delle prestazioni aerodinamiche in modo più efficiente ed economico.

Aerodynamic analysis of cyclists : a novel approach combining CFD and rigging animation technique

ANTENUCCI, GIACOMO
2022/2023

Abstract

Reduction of aerodynamic drag is a crucial aspect in cycling. Currently, to optimize aerodynamic, athletes rely on wind tunnel tests, CFD simulations, or velodrome experiments, which still require validation through wind tunnel measurements. This implies that each new test necessitates significant investments in terms of financial resources and time, a vital aspect in a cyclist's professional life. This paper introduces a novel workflow that aims to streamline and accelerate the aerodynamic analysis process for cycling. The proposed workflow focuses on utilizing a full-sized mannequin and integrates CFD simulations, solved with 3D RANS and k-omega SST model, wind tunnel validation, 3D scanning, and rigging animation techniques in Blender. The animation technique involves creating a virtual skeleton that allows the scanned model to be posed in any desired position, eliminating the need for physical adjustments and repetitive wind tunnel testing. To showcase the time-saving advantages of this approach, a steady CFD analysis is conducted to compare six different configurations obtained using the rigged model, in terms of drag areas, velocity streamlines, and pressure coefficient distribution. The obtained data trends closely align with previous similar studies in the literature. The entire process, from the initial 3D scanning of the mannequin to achieving the desired positioning, takes approximately three hours, significantly reducing the time required compared to traditional methods. Additionally, future adjustments to the position or equipment can be easily made using the virtual rigging model. By integrating virtual techniques with CFD simulations and wind tunnel validation, the proposed workflow enables rapid evaluation of aerodynamic performance in a more efficient and cost-effective manner.
ROSSONI, MARCO
SOMASCHINI, CLAUDIO
ING - Scuola di Ingegneria Industriale e dell'Informazione
18-lug-2023
2022/2023
La riduzione della resistenza aerodinamica è un aspetto cruciale nel ciclismo. Attualmente, per ottimizzare l'aerodinamica, gli atleti si affidano a test in galleria del vento, simulazioni CFD o esperimenti in velodromo, che comunque richiedono la validazione tramite misurazioni in galleria del vento. Ogni nuovo test richiede quindi significativi investimenti in termini di risorse finanziarie e di tempo, aspetto vitale nella vita professionale di un ciclista. Questa ricerca introduce un nuovo metodo di lavoro che mira a semplificare ed accelerare il processo di analisi aerodinamica nel ciclismo. Il flusso di lavoro è focalizzato sull'utilizzo di un manichino a grandezza naturale ed integra simulazioni CFD, validazione in galleria del vento, scansione 3D e tecniche di animazione “rigging”, realizzate con Blender. Tali tecniche prevedono la creazione di uno scheletro virtuale che consente di posizionare il modello scansionato in qualsiasi posizione desiderata, eliminando la necessità di cambiamenti e test fisici. Per dimostrare i vantaggi in termini di risparmio di tempo di questo approccio, sei diverse configurazioni ottenute utilizzando il modello con animazione sono confrontate con analisi CFD in termini di resistenza aerodinamica, linee di velocità e distribuzione dei coefficienti di pressione. L'intero processo dalla scansione iniziale del manichino al raggiungimento della posizione desiderata impiega approssimativamente tre ore, riducendo significativamente il tempo richiesto rispetto ai metodi tradizionali. Inoltre, è possibile apportare facilmente modifiche future alla posizione o all'equipaggiamento utilizzando il modello virtuale. Integrando tecniche virtuali con simulazioni CFD e validazione in galleria del vento viene consentita una valutazione rapida delle prestazioni aerodinamiche in modo più efficiente ed economico.
File allegati
File Dimensione Formato  
2023_07_Antenucci.pdf

accessibile in internet per tutti

Descrizione: article
Dimensione 47.26 MB
Formato Adobe PDF
47.26 MB Adobe PDF Visualizza/Apri
2023_07_Antenucci_ExecutiveSummary.pdf

accessibile in internet per tutti

Descrizione: executive summary
Dimensione 12.35 MB
Formato Adobe PDF
12.35 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/210695